

International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 6 Issue 5 May 2017, Page No. 21269-21285 Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i5.13

Analysis and Design Of Multistory Apartment Building Using ETABS

Sayyed A.Ahad¹, Hashmi S Afzal², Pathan Tabrej³, Shaikh Ammar⁴, Shaikh Vikhar⁵, Shivaji Bidve⁶

UG student Department of Civil Engineering, Sandipani Technical Campus Faculty Of Engineering, SRTMUN University, Latur, Maharashtra abdulahadsayyed@gmail.com UG student 2Department of Civil Engineering, Sandipani Technical Campus Faculty Of Engineering, SRTMUN University, Latur, Maharashtra hashmisafzal@gmail.com UG student 3Department of Civil Engineering, Sandipani Technical Campus Faculty Of Engineering, SRTMUN University, Latur, Maharashtra pathantp@gmail.com UG student 4Department of Civil Engineering, Sandipani Technical Campus Faculty Of Engineering, SRTMUN University, Latur, Maharashtra Ammarshaikh1980@gmail.com UG student 5Department of Civil Engineering, Sandipani Technical Campus Faculty Of Engineering, SRTMUN University, Latur, Maharashtra vgshaikh10@yahoo.com Assistant Professor 6Department of Civil Engineering, Sandipani Technical Campus Faculty Of Engineering, SRTMUN University, Latur, Maharashtra

shivabidwe@gmail.com

ABSTRACT

Practical knowledge is an important and essential skill required by every engineer. For obtaining this skill, an apartment building is analysed and designed, Located in Latur, Maharastra with (B+G+10) storeys having a car parking facility provided at basement floor. The building has a shear wall around the lift pit. The modelling and analysis of the structure is done by using ETABS and the designing was done. Design of slab, stair case and an isolated footing are done manually. The design methods involves load calculations manually and analysing the whole structure by ETABS. The design methods used in ETABS are limit state design confirming to IS code of practice. Along with analysing and designing of this building, construction sites were also visited.

Keywords: Analysis and design, Apartment Building, Lift pit, Shear wall.

1. Introduction

Practical knowledge is an essential skill required by an engineer. By industrial training, the practical knowledge can be super imposed to technical knowledge. Industrial training is an essential component in the development of the practical and professional skills required by an engineer. For understanding the engineering practice in general and sense of frequent and possible problems that may arise during construction and also necessary solution for these problems can be experienced and understood during industrial training. This exposure to the practical world is the main objective of industrial training.

2. Training Information

The industrial training was done in STRUCTURAL ONE consultancy; Latur under the guidance of Mr. Faiz Sagri.

An Apartment building is modelled and analysed using AUTOCAD 2016 and ETABS 2015 respectively. Design of slab, stair case and an isolated footing are done manually, for obtaining precise results. The building is a B+G+10 storey

structure, the basement floor facilitated for car parking. Shear wall is provided around the lift pit, staircase is provided.

The objectives of industrial training are:

- To get exposure to engineering experience and knowledge, which are required in the industry and not taught in the lecture rooms.
- To apply the engineering knowledge taught in the lecture rooms in real industrial situations.
- To share the experience gained from the "industrial training" in the discussion held in the lecture rooms.
- To get a feel of the work environment.
- To gain exposure on engineering procedural work flow management and implementation.
- To get responsibilities and ethics of engineers.

3. A BRIEF DESCRIPTION OF SOFTWARE'S USED IN TRAINING

ETABS 2015:

ETABS is an engineering software product that caters to multi-story building analysis and design. Modeling tools and

templates, code-based load prescriptions, analysis methods and solution techniques, all coordinate with the grid-like geometry unique to this class of structure. Basic or advanced systems under static or dynamic conditions may be evaluated using ETABS. For a sophisticated assessment of seismic performance, modal and direct-integration time-history analyses may couple with P-Delta and Large Displacement effects. Nonlinear links and concentrated PMM or fiber hinges may capture material nonlinearity under monotonic or hysteretic behavior. Intuitive and integrated features make applications of any complexity practical to implement. Interoperability with a series of design and documentation platforms makes ETABS a coordinated and productive tool for designs which range from simple 2D frames to elaborate modern high-rises.

The innovative and revolutionary new ETABS is the ultimate integrated software package for the structural analysis and design of buildings. Incorporating 40 years of continuous research and development, this latest ETABS offers unmatched 3D object based modeling and visualization tools, blazingly fast linear and nonlinear analytical power, sophisticated and comprehensive design capabilities for a wide-range of materials, and insightful graphic displays, reports, and schematic drawings that allow users to quickly and easily decipher and understand analysis and design results.

From the start of design conception through the production of schematic drawings, ETABS integrates every aspect of the engineering design process. Creation of models has never been easier - intuitive drawing commands allow for the rapid generation of floor and elevation framing. CAD drawings can be converted directly into ETABS models or used as templates onto which ETABS objects may be overlaid. The state-of-the-art SAP Fire 64-bit solver allows extremely large and complex models to be rapidly analyzed, and supports nonlinear modeling techniques such as construction sequencing and time effects (e.g., creep and shrinkage).

Design of steel and concrete frames (with automated optimization), composite beams, composite columns, steel joists, and concrete and masonry shear walls is included, as is the capacity check for steel connections and base plates. Models may be realistically rendered, and all results can be shown directly on the structure. Comprehensive and customizable reports are available for all analysis and design output, and schematic construction drawings of framing plans, schedules, details, and cross-sections may be generated for concrete and steel structures.

ETABS provides an unequaled suite of tools for structural engineers designing buildings, whether they are working on one-story industrial structures or the tallest commercial high-rises. Immensely capable, yet easy-to-use, has been the hallmark of ETABS since its introduction decades ago, and this latest release continues that tradition by providing engineers with the technologically-advanced, yet intuitive, software they require to be their most productive.

AUTO-CAD 2016:

All the drawing and detailing works for this training were done by making use of AutoCAD 2007, developed by M/s. AUTODESK, USA. As such, this is the pioneering software in CAD. AutoCAD is a vector graphics drawing program. It uses primitive entities such as lines, poly-lines, circles, arcs and text as the foundation for more complex objects. AutoCAD's native file format, DWG, and to a lesser extent, its interchange file format, DXF has become the standards for interchange of CAD data.

4. MODELLING IN ETABS Importing of Floor Plan from Auto-cad:

Fig.1 Centre line plan

Properties

This chapter provides property information for materials, frame sections, shell sections, and links.

Materials

Table 1 - Material Properties - Summary

Name	Туре	E MPa	v	Unit Weight kN/m³	Design Strengths
HYSD415	Rebar	200000	0	76.9729	Fy=415 MPa, Fu=485 MPa
M25	Concrete	25000	0.2	24.9926	Fc=25 MPa
Mild250	Rebar	200000	0	76.9729	Fy=250 MPa, Fu=410 MPa

Frame Sections

Table 2 - Frame Sections - Summary

Name	Mate	erial	Shape					
Beam230x380	M25		Concrete Rectang	11ar				
Beam230x450	M25		Concrete Rectangular					
Beam300x450	M25		Concrete Rectangular					
Column300x4	50 M25		Concrete Rectangu	e 11ar				
Shell Sections Table 3 - Shell	Shell Sections Table 3 - Shell Sections - Summary							
Name	Design Type	Element Type	Material	Total Thickness mm				

Shearwall	Wall	Shell- Thin	M25	150	Dead	Linear Static
Slab125mm	Slab	Shell- Thin	M25	125	Live Superimposed Dead	Linear Static
Slab175mm	Slab	Shell- Thin	M25	175	EQx	Linear Static
					EQy	Linear Static

Reinforcement Sizes

Table 4 - Reinforcing Bar Sizes							
Name	Diameter	Area					
	mm	mm ²					
10	10	79					
16	16	201					
20	20	314					

5. Framing Of Model

Fig.2 3D Model

6. ANALYSIS IN ETABS

Load Patterns

Table 5 - Load Patterns								
Name	Туре	Self Weight Multiplier	Auto Load					
Dead	Dead	1						
Live	Live	0						
Superimpos ed Dead	Superimpose d Dead	0						
EQx	Seismic	0	IS1893 2002					
EQy	Seismic	0	IS1893 2002					
Table 6– Load Cases								
Name	Туре							

Load calculations

Dead loads

The dimensions of the cross section are to be assumed initially which enable to estimate the dead load from the known weights of the structure. The values of the unit weights of the structure and the values of the unit weight of the materials are specified in IS 875:1987(Part-I). As per IS 875: 1987 (part I). The dead load assigned in the ground floor is shown in the figure 3.

- Unit weight of brick = 19.1 kN/m^3
- Unit weight of concrete = 25kN/m³

Here sample calculation is done:

Wall load

a) Main wall load Thickness of wall = 150 mm = unit weight of brick x thickness of wall x(floor height -beam depth) =19.1 x 0.150 x (3 -0.45) = 7.305 kN/m

b) Partition wall load Thickness of wall = 100 mm = 19.1 x 0.10 x (3 -0.45) = 4.875 kN/m c) Parapet wall load Thickness of wall = 100 mm

= 19.1 x 0.10 x 1.5

= 2.865 kN/m

Sayyed A.Ahad, IJECS Volume 6 Issue 5 May, 2017 Page No. 21269-21285

Fig.3- Dead Load Floor finish = 1.25kN/m² (as per IS 875 part 1) Total floor load = 1.25 kN/m²

Fig.4- Floor Finish Load (Super Dead) Live loads

They are also known as imposed loads and consist of all loads other than the dead loads of the structure. The standard values are stipulated in IS875:1987 (part II).The live loads considered

are given in table 7. The assigned live load on ground floor in Etabs will be as shown in the figure 5.

Table.7-Live loads

Area	Live load (kN/m ²)
All rooms and kitchens	2
Toilet and bathrooms	2
Corridors, Passages, Staircases	3
Balconies	3
Parking	5
Electrical Room	5
Machine room	5

Fig.5-Live Load Earthquake Forces

Earthquakes generate waves which move from the origin of its location with velocities depending on the intensity and magnitude of the earthquake. The impact of earthquake on the structures depends on the stiffness of the structure, stiffness of the soil media, height and location of the structure, etc. the earthquake forces are prescribed in IS 1893:2002 (part-I).

Since the building is located in Latur, Maharastra, it is included in the zone III. And the seismic base shear calculation and its distribution was done as per IS 1893:2002 (part-I). The

base shear or total design lateral force along any principle direction shall be determined by the following expression: V = A X W

 V_{B} = Design base shear

 A_{h}^{J} = Design horizontal seismic coefficient based on fundamental natural period, and type of soil

W = Seismic weight of the building

The design horizontal seismic coefficient,

 $A_h = \frac{ZIS_a}{RS_g}$

Where,

- Z = Zone factor given in table 2, for the maximum consideredearthquake (MCE) and service life of the structure in azone. The factor 2 in the denominator is used so as toreduce the MCE zone factor to the factor for design basicearthquake (DBE) I = Importance factor, depending uponthe functional use of structures, characterized byhazardous consequences of failure, post-earthquakefunctional needs, historical value or economic importance(Table 6 of IS 1893 (Part 1): 2002).
- R = Response reduction factor, depending on the perceived seismic damage performance of the structure, characterized by ductile or brittle deformations. However, the ratio (I/R) shall not be greater than 1.0. The value for buildings are given in Table7 of IS 1893 (Part 1): 2002.
- Sa/g = Average response acceleration coefficient. Sa/g is determined on the basis of approximate fundamental natural period of vibration on both the directions.

Natural period of vibration,

$$T_a = \frac{0.09 \times h}{\sqrt{d}}$$

Earthquake loading

As per IS 1893:2002 (part-I) earthquake loads are calculated. Latur belongs to seismic zone 3. So seismic zone coefficient, Z =0.16 Importance factor, I =1(other buildings) Response reduction factor, R =3 Height of building =33 m Dimension of building along X- direction = 12.19 m Dimension of building along Y- direction =18.288 m

Time period,

Along x direction,

$$T_a = \frac{0.09 \times 33}{\sqrt{12.19}} = 0.850$$

Along y direction,

$$T_a = \frac{0.09 \times 33}{\sqrt{18.288}} = 0.694$$

Auto Seismic Loading

IS1893 2002 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQx according to IS1893 2002, as calculated by ETABS.

Direction and Eccentricity

Direction = X

Structural Period

Period Calculation Method = User Specified

User Period

T = 0.850 sec

Factors and Coefficients

Seismic Zone Factor, Z [IS Table

2] Z = 0.16

Response Reduction Factor, R [IS Table 7] R = 3

Importance Factor, I [IS Table 6] I = 1

Site Type [IS Table 1] = II

Seismic Response

Spectral Acceleration S_a Coefficient, S_a /g [IS $\frac{S_a}{g} = \frac{1.36}{T}$ $\frac{S_a}{g} = 1.36$ 6.4.5]

Equivalent Lateral Forces

Seismic Coefficient, A_h [IS 6.4.2] $A_h = \frac{ZI \frac{S_a}{g}}{2R}$

Calculated Base Shear

Direction	Period Used	W	V _b	
	(sec)	(kN)	(kN)	
X	0.850	15000.4234	553.9871	

Applied Storey Forces

IS1893 2002 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQy according to IS1893 2002, as calculated by ETABS.

Direction and Eccentricity

Direction = Y

Structural Period

Period Calculation Method = User Specified

User Period

T = 0.694 sec

Factors and Coefficients

Seismic Zone Factor, Z [IS Table_Z = 0.16 2]

Response Reduction Factor, R [IS $_{R} = 3$ Table 7]

Importance Factor, I [IS Table 6] I = 1 Site Type [IS Table 1] = II

Seismic Response

Spectral Acceleration S_a Coefficient, S_a /g [IS $\frac{S_a}{g} = \frac{1.36}{T}$ $\frac{S_a}{g} = 1.36$ 6.4.5]

Equivalent Lateral Forces

Seismic Coefficient, A_h [IS 6.4.2] $A_h = \frac{ZI \frac{S_a}{g}}{2R}$

Calculated Base Shear

Direction	Period Used	W	V _b	
	(sec)	(kN)	(kN)	
Y	0.694	15000.4234	783.8838	

Applied Story Forces

Load Combinations

Design of the structures would have become highly expensive in order to maintain either serviceability and safety if all types of forces would have acted on all structures at all times. Accordingly the concept of characteristics loads has been accepted to ensure at least 95 percent of the cases, the characteristic loads are to be calculated on the basis of average/mean load of some logical combinations of all loads mentioned above.

IS 456:2000, IS 875:1987 (Part-V) and IS 1893(part-I):2002 stipulates the combination of the loads to be considered in the design of the structures. The different combinations used are:

Table.8- Load Combinations

Name	Load Case/Combo	Scale Factor	Туре	Auto
UDCon1	Dead	1.5	Linear Add	No
UDCon1	Superimposed Dead	1.5		No
UDCon2	Dead	1.5	Linear Add	No
UDCon2	Live	1.5		No
UDCon2	Superimposed Dead	1.5		No
UDCon3	Dead	1.2	Linear Add	No
UDCon3	Live	1.2		No
UDCon3	Superimposed Dead	1.2		No

UDCon3	EQx	1.2		No	UDWal8	EQx	-1.5		No
UDCon4	Dead	1.2	Linear Add	No	UDWal9	Dead	1.5	Linear Add	No
UDCon4	Live	1.2		No	UDWal9	Superimposed Dead	1.5		No
UDCon4	Superimposed Dead	1.2		No	UDWal9	EQy	1.5		No
UDCon4	EQx	-1.2		No	UDWal10	Dead	1.5	Linear Add	No
UDCon5	Dead	1.2	Linear Add	No	UDWal10	Superimposed Dead	1.5		No
UDCon5	Live	1.2		No	UDWal10	EQy	-1.5		No
UDCon5	Superimposed Dead	1.2		No	UDWal11	Dead	0.9	Linear Add	No
UDCon5	EOv	1.2		No	UDWal11	Superimposed Dead	0.9		No
UDCon6	Dead	1.2	Linear Add	No	UDWal11	EOx	1.5		No
UDCon6	Live	1.2	Lintur 1100	No	UDWal12	Dead	0.9	Linear Add	No
UDCon6	Superimposed Dead	1.2		No	UDWal12	Superimposed Dead	0.9	Efficar / Idd	No
UDCon6	FOv	-1.2		No	UDWal12	FOx	-1.5		No
UDCon7	EQy	-1.2	Lincor Add	No	UDWel12	Dood	-1.5	Lincor Add	No
UDCon7	Superimposed Deed	1.5	Lilleal Auu	No	UDWal13	Superimposed Deed	0.9	Lilleal Add	No
UDCon7	EQ:	1.5		INU N-		Superimposed Deau	0.9		No No
	EQX	1.5	** • • • •	NO	UDwall5	EQy	1.5	** ***	NO
UDCon8	Dead	1.5	Linear Add	No	UDWal14	Dead	0.9	Linear Add	No
UDCon8	Superimposed Dead	1.5		No	UDWal14	Superimposed Dead	0.9		No
UDCon8	EQx	-1.5		No					
UDCon9	Dead	1.5	Linear Add	No	UDWal14	EQy	-1.5		No
UDCon9	Superimposed Dead	1.5		No	Envelope	UDCon1	1	Envelope	No
UDCon9	EQy	1.5		No	Envelope	UDCon2	1		No
UDCon10	Dead	1.5	Linear Add	No	combo	ODC012			110
UDCon10	Superimposed Dead	1.5		No	Envelope	UDCon3	1		No
UDCon10	EQy	-1.5		No	combo				
UDCon11	Dead	0.9	Linear Add	No	Envelope	UDCon4	1		No
UDCon11	Superimposed Dead	0.9		No	Envelope	UDCon5	1		No
UDCon11	EQx	1.5		No	combo	ebeons	1		110
UDCon12	Dead	0.9	Linear Add	No	Envelope	UDCon6	1		No
UDCon12	Superimposed Dead	0.9		No	combo				Ŋ
UDCon12	EQx	-1.5		No	Envelope	UDCon/	1		No
UDCon13	Dead	0.9	Linear Add	No	Envelope	UDCon8	1		No
UDCon13	Superimposed Dead	0.9		No	combo	020000	•		110
UDCon13	EQy	1.5		No	Envelope	UDCon9	1		No
UDCon14	Dead	0.9	Linear Add	No	combo				
UDCon14	Superimposed Dead	0.9		No	Envelope	UDCon10	1		No
UDCon14	EQy	-1.5		No	Envelope	UDCon11	1		No
UDWal1	Dead	1.5	Linear Add	No	combo				
UDWal1	Superimposed Dead	1.5		No	Envelope	UDCon12	1		No
UDWal2	Dead	1.5	Linear Add	No	combo	UDC-#12	1		N-
UDWal2	Live	1.5		No	combo	UDC0n13	1		NO
UDWal2	Superimposed Dead	1.5		No	Envelope	UDCon14	1		No
UDWal3	Dead	1.2	Linear Add	No	combo				
UDWal3	Live	1.2	Linear rad	No					
UDWal3	Superimposed Dead	1.2		No	All	these combinations	are built	in the Etabs	s 2015.
UDWal3	FOx	1.2		No	analysis resu	ilts from the critical of	combinat	ions are used	for the
UDWal3	Dead	1.2	Linear Add	No	design of str	uctural member.			
	Livo	1.2	Lineai Auu	No	Note:				
	Superimposed Deed	1.2		No	DL - Dead lo	bad			
UDWal4	EQ:	1.2		No		_			
UDWal4	EQX	-1.2	Lincon Add	No	LL - Live loa	ad			
UDWal5	Dead	1.2	Linear Add	INO	EL - Earthou	uake load in x directio	on		
UDWal5	Live	1.2		NO			011		
UDWal5	Superimposed Dead	1.2		No	EL_z - Earthqu	uake load in z direction	on		
UDWal5	EQy	1.2		No	2				
UDWal6	Dead	1.2	Linear Add	No	Analysis Re	sults			
UDWal6	Live	1.2		No	, 5.5 Th e	e structure was ana	lysed as	ordinarv r	noment
UDWal6	Superimposed Dead	1.2		No	resisting spa	ice frames in the ve	ersatile so	oftware Etab	\$ 2015
UDWal6	EQy	-1.2		No	 Ioint co-ord 	inate command allow	vs snecif	ving and gen	erating
UDWal7	Dead	1.5	Linear Add	No	the co-ordin	ates of the joints of	f the stri	icture initiat	ing the
UDWal7	Superimposed Dead	1.5		No	specification	s of the structure M	ember in	cidence com	mand ic
UDWal7	EQx	1.5		No	used to specification	ify the members by c	lefining (connectivity b	
UDWal8	Dead	1.5	Linear Add	No	iointo The	columns and been	aro m	adelled using	t hoom
UDWal8	Superimposed Dead	1.5		No	joints. The columns and beams are modelled using beam				

elements. Member properties have to be specified for each member. From the analysis, maximum design loads, moments and shear on each member was obtained. From these values, we design the structure.

Fig.6 Axial Force Diagram

Fig.7 Bending Moment Diagram

Fig.8 Torsion Force Diagram

Fig.9 Torsional moment diagram

Fig.10 Slab bending moment diagram

Fig.11 Slab shear force diagram

7. Design of RC Building

General

The aim of structural design is to achieve an acceptable probability that the structure being designed will perform the function for which it is created and will safely withstand the influence that will act on it throughout its useful life. These influences are primarily the loads and the other forces to which it will be subjected. The effects of temperature fluctuations, foundation settlements etc. should be also considered. The design methods used for the design of reinforced concrete structures are working stress method, ultimate load method and limit state method. Here we have adopted the limit state method of design for slabs, beams, columns and stairs.

In the limit state method, the structure is designed to withstand safely all loads liable to act on it through its life and also to satisfy the serviceability requirements, such as limitation to deflection and cracking. The acceptable limit of safety and serviceability requirements before failure is called limit state. All the relevant limit states should be considered in the design to ensure adequate degrees of safety and serviceability. The structure should be designed on the basis of most critical state and then checked for other limit states.

The design of a structure must satisfy three basic requirements:

- Stability To prevent overturning, sliding or buckling of the structure, or part of it, under the action of loads.
- Strength To resist safely the stresses induced by the loads in the various structural members.
- Serviceability To ensure satisfactory performance under service load conditions which implies providing adequate stiffness and reinforcement to contain deflections, crack widths and vibrations within acceptable limits, and also providing impermeability and durability.

Concrete Frame Design in ETABS

Fig.12

Fig.13

Flan View - Gentand Fizur - Z a 2 (m) These Retrieving (E-418.2000)

Fig.14

Beam section design (ETABS)

Beam Element Details

Level		Element	Un	ique N	Name	Sectio	n ID	L	ength	(mm)	LLRF
Ground Floor		В9	10	D		Beam230x450		4502440			1
Section F	Prop	perties									
b (mm)	h	(mm)	b _f (n	nm)	d _s (1	mm)	\mathbf{d}_{ct}	(mn	1)	d _{cb} (1	nm)
230	4	50	230		0		30			30	
<u>Material</u> E _c (MPa)	Pro	operties f _{ck} (MPa)	Lt.Wt	Facto	or (Un	itless)	f _v (ľ	(IPa)	f _{vs} (MPa)
25000		25	·	1				415	,	250)
Design C	ode	Paramet	ters								
¥с						¥s.					
1.5						1.15					
Flexural	Rei	nforceme	ent f	or Ma	jor Ax	cis Mo	ment,	M _{u3}			
]	End-I Rebar	Er	nd-I	Midd Reba	lle r	Middl	e	End- Reba	J r	End-J

Rebar

%

Area

mm²

Rebar

%

Area

mm²

Area

mm²

Sayyed A.Ahad, IJECS Volume 6 Issue 5 May, 2017 Page No. 21269-21285

%

Rebar

	End-I Rebar Area mm ²	End-I Rebar %	Middle Rebar Area mm ²	Middle Rebar %	End-J Rebar Area mm ²	End-J Rebar %
Top (+2 Axis)	212	0.2	212	0.2	212	0.2
Bot (-2 Axis)	212	0.2	212	0.2	212	0.2

Flexural Design Moment, M_{u3}

	End-I Design M _u kN-m	End-I Statio n Loc mm	Middle Design M _u kN-m	Middl e Statio n Loc mm	End-J Design M _u kN-m	End-J Statio n Loc mm
Top (+2 Axis)	-7.4992	406.7	-2.7195	1626.7	-4.0314	2440
Combo	envelopecomb o		envelopecomb o		envelopecomb o	
Bot (-2 Axis)	2.9202	406.7	8.4427	1626.7	5.8811	2440
Combo	envelopecomb o		envelopecomb o		envelopecomb o	

Shear Reinforcement for Major Shear, Vu2

End-I	Middle	End-J
Rebar A _{sv} /s	Rebar A _{sv} /s	Rebar A _{sv} /s
mm²/m	mm²/m	mm²/m
423.2	423.2	423.2

Design Shear Force for Major Shear, Vu2

End-I Design V _u kN	End-I Station Loc mm	Middle Design V _u kN	Middle Station Loc mm	End-J Design V _u kN	End-J Station Loc mm
10.5504	406.7	0.0004	1626.7	6.2524	2440
envelopecombo		envelopecombo		envelopecombo	

Torsion Reinforcement

Shear
Rebar A _{svt} /s
mm²/m

11111-/111

0

Design Torsion Force

Design T _u kN-m	Station Loc mm	Design T _u kN-m	Station Loc mm
1.3507	1220	1.3507	1220
envelopecombo		envelopecombo	

Column Section Design (ETABS)

Column Element Details

Level	Element	Uniq	ue Name	Sectio	on ID	Length (mm)	LLRF
Ground Floor	C29	189		Colur	nn300x450	3000	0.556
Section Pro	operties						
b (mm)	h (mm)	dc (mm))	Cover (To	rsion) (mm)	
300	450		58		30		
Material P	roperties		·		·		
E _c (MPa)	f _{ck} (MPa)) L	t.Wt Fac	tor (U	nitless) f _y	(MPa) f _{ys} (1	MPa)

E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
25000	25	1	415	250

Design Code Parameters

Уc	¥s
1.5	1.15

Longitudinal Reinforcement	Design for Pu	- M _{u2} - M _{u3} II	nteraction

Column End	Rebar Area mm²	Rebar %
Тор	1080	0.8
Bottom	1080	0.8

Design Axial Force & Biaxial Moment for P _u - M _{u2} - M _{u3} Interaction							
Column End	Design P _u kN	Design M _{u2} kN-m	Design M _{u3} kN-m	Station Loc mm	Controlling Combo		
	kN	kN-m	kN-m	mm			
Тор	852.19	0.1859	-16.2614	2470	envelopecombo		
Bottom	859.6904	-0.0938	10.6284	0	envelopecombo		

Shear Reinforcement for Major Shear, V_{u2}

Column End	Rebar A _{sv} /s mm²/m	Design V _{u2} kN	Station Loc mm	Controlling Combo
Тор	552	10.8866	2470	envelopecombo
Bottom	552	10.8866	0	envelopecombo

Shear Reinforcement for Minor Shear, V_{u3}

Column End	Rebar A _{sv} /s mm²/m	Design V _{u3} kN	Station Loc mm	Controlling Combo
Тор	828	0.2975	2470	envelopecombo
Bottom	828	0.2975	0	envelopecombo

SHEAR WALL DESIGN (ETABS)

Shear Wall Preferences - IS 456-2000

Item	Value	
Rebar Material	HYSD415	
Rebar Shear Material	Mild250	
Phi (Steel)	1.15	
Phi (Concrete)	1.5	
PMax factor	0.8	
# Interaction Curves	24	
# Interaction Points	11	
Min Eccentricity Major?	No	
Min Eccentricity Minor?	No	
Edge Design PT-Max	0.06	
Edge Design PC-Max	0.04	
Section Design IP-Max	0.04	
Section Design IP-Min	0.0025	
D/C Ratio Limit	0.95	

Shear Wall Pier Overwrites - IS 456-2000

Stor y	Pi er	Desi gn	LL RF	Seis mic	PierSec Type	End Bar	Edge Bar	EdgeBa rSpc mm	Cov er mm	Mate rial	Design/C heck
Grou nd Floo r	P1	Yes	1	Yes	Uniform Reinforc ing Section	3	3	250	31.3	M25	Design
Grou nd Floo r	P2	Yes	1	Yes	Uniform Reinforc ing Section	2	2	250	31.3	M25	Design

Station Location	ID	Left X ₁ mm	Left Y ₁ mm	Right X ₂ mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	-71558.6	-24448.3	-71558.6	-22356.8	2091.4	150
Bottom	Leg 1	-71558.6	-24448.3	-71558.6	-22356.8	2091.4	150

Stor y	Pier Lab el	Stati on	Desig n Type	Edg e Reb ar	End Reb ar	Reba r Spaci ng mm	Requi red Reinf %	Curr ent Reinf %	Pier Leg	Leg X1 mm	Leg Y1 mm	Leg X2 mm
Grou nd Floor	P1	Тор	Unifo rm	10	10	250	0.25	0.46	Top Leg 1	- 7360 0.2	- 2444 8.3	- 7155 8.6
Grou nd Floor	P1	Тор	Unifo rm	10	10	250	0.25	0.46	Top Leg 2	- 7360 0.2	- 2235 6.8	- 7155 8.6
Grou nd Floor	P1	Botto m	Unifo rm	10	10	250	0.25	0.46	Botto m Leg 1	- 7360 0.2	- 2444 8.3	- 7155 8.6
Grou nd Floor	P1	Botto m	Unifo rm	10	10	250	0.25	0.46	Botto m Leg 2	- 7360 0.2	- 2235 6.8	- 7155 8.6
Grou nd Floor	P2	Тор	Unifo rm	8	8	250	0.25	0.29	Top Leg 1	- 7155 8.6	- 2444 8.3	- 7155 8.6
Grou nd Floor	P2	Botto m	Unifo rm	8	8	250	0.25	0.29	Botto m Leg 1	- 7155 8.6	- 2444 8.3	- 7155 8.6

Shear Wall Pier Summary - IS 456-2000 (Part 1 of 2)

Shear Wall Pier Summary - IS 456-2000 (Part 2 of 2)

Story	Pier Labe l	Statio n	Leg Y2 mm	Shear Rebar mm²/ m	Boundar y Zone Left mm	Boundar y Zone Right mm	Warning s	Errors
Groun d Floor	P1	Тор	- 22356. 8	375			No Message	No Messag e
Groun d Floor	P1	Bottom	- 24448. 3	375			No Message	No Messag e
Groun d Floor	P1	Bottom	- 22356. 8	375			No Message	No Messag e
Groun d Floor	P2	Тор	- 22356. 8	375			No Message	No Messag e
Groun d Floor	P2	Bottom	- 22356. 8	375			No Message	No Messag e

IS 456:2000 Pier Design Pier Details

I lei Detta											
Story ID	Pier	Centroid X	Centroid	YLength	Thickness	LLRF					
	ID	(mm)	(mm)	(mm)	(mm)						
Ground Floor	P2	-71558.6	-23402.5	2091.4	150	1					

Material Properties

E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
25000	25	1	415	250

Design Code Parameters

Γ_{s}	Γ_{c}	IP _{MAX}	IP _{MIN}	P _{MAX}	MinEcc Major	MinEcc Minor
1.15	1.5	0.04	0.0025	0.8	No	No

Pier Leg Location, Length and Thickness

Flexural Design for P_{u_1} M_{u2} and M_{u3}

Station Location	Required Rebar Area (mm ²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	Pu kN	M _{u2} kN-m	M _{u3} kN- m	Pier A _g mm²
Тор	784	0.0025	0.0029	UDWal14	- 13.4082	0	0	313714
Bottom	784	0.0025	0.0029	UDWal14	13.4082	0.4022	0	313714

Shear Design

Sheur Design											
Station Location	ID	Rebar mm²/m	Shear Combo	P _u kN	M _u kN-m	V _u kN	Vc kN	V _c + V _s kN			
Тор	Leg 1	375	UDWal14	- 13.4082	0	0	72.7817	209.1792			
Bottom	Leg 1	375	UDWal14	13.4082	0	0	73.155	209.5525			

Boundary Element Check

Station Location	ID	Edge Length (mm)	Governing Combo	Pu kN	M _u kN-m	Stress Comp MPa	Stress Limit MPa
Top-Left	Leg 1	0	UDWal1	0	0	0	0
Top– Right	Leg 1	0	UDWal1	0	0	0	0
Bottom– Left	Leg 1	0	UDWal1	22.3469	0	0.07	5
Botttom– Right	Leg 1	0	UDWal1	0	0	0	0

IS 456:2000 Pier Design Pier Details

Story	Pier	Centroid	X Centroid	YLength	Thickness	LIDE	
ID	ID	(mm)	(mm)	(mm)	(mm)	LLKI	
S9	P1	-72579.4	-23402.5	083.3	150	1	

Material Properties

E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
25000	25	1	415	250

Design Code Parameters

Γ_{s}	Γ _c	IP _{MAX}	IP _{MIN}	P _{MAX}	MinEcc Major	MinEcc Minor
1.15	1.5	0.04	0.0025	0.8	No	No

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁ mm	Left Y ₁ mm	Right X ₂ mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	-73600.2	-24448.3	-71558.6	-24448.3	2041.6	150
Тор	Leg 2	-73600.2	-22356.8	-71558.6	-22356.8	2041.6	150
Bottom	Leg 1	-73600.2	-24448.3	-71558.6	-24448.3	2041.6	150
Bottom	Leg 2	-73600.2	-22356.8	-71558.6	-22356.8	2041.6	150

Flexural Design for P_{u} , M_{u2} and M_{u3}

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	Pu kN	M _{u2} kN- m	M _{u3} kN- m	Pier A _g mm ²
Тор	1531	0.0025	0.0046	UDWal14	- 26.1778	0	0	612490
Bottom	1531	0.0025	0.0046	UDWal14	26.1778	0	0	612490

Shear Design

Station Location	ID	Rebar mm²/m	Shear Combo	P _u kN	M _u kN-m	V _u kN	V _c kN	V _c + V _s kN
Тор	Leg 1	375	UDWal14	- 13.0889	0	0	71.0488	204.1988
Тор	Leg 2	375	UDWal14	- 13.0889	0	0	71.0488	204.1988
Bottom	Leg 1	375	UDWal14	13.0889	0	0	71.4132	204.5632
Bottom	Leg 2	375	UDWal14	13.0889	0	0	71.4132	204.5632

Boundary Element Check

Station Location	ID	Edge Length (mm)	Governing Combo	P _u kN	M _u kN-m	Stress Comp MPa	Stress Limit MPa
Top-Left	Leg 1	0	UDWal1	0	0	0	0
Top– Right	Leg 1	0	UDWal1	0	0	0	0
Top-Left	Leg 2	0	UDWal1	0	0	0	0
Top– Right	Leg 2	0	UDWal1	0	0	0	0
Bottom- Left	Leg 1	0	UDWal1	21.8149	0	0.07	5
Botttom– Right	Leg 1	0	UDWal1	0	0	0	0
Bottom– Left	Leg 2	0	UDWal1	0	0	0	0
Botttom– Right	Leg 2	0	UDWal1	21.8149	0	0.07	5

The detailing of concrete frame and shear wall was done using ETABS and various drawings and scheduling tables were obtained.

Design of Two-Way Slab

Slabs are plate elements having their depth much smaller than other two dimensions. They usually carry a uniformly distributed load from the floors and roof of the building. Design of reinforced concrete slab was done using IS 456:2000. Slabs of thickness 125 mm is used in the building and designed as two-way slab. Grade of concrete M25 is assumed for slab design. The slab to be designed is shown in Figure 15.

Material constants

Concrete, $f_{ak} = 25$ N/mm²

CK.

Steel, $f_y = 415 \text{ N/mm}^2$

Dimensioning

Clear span distance in shorter direction, l = 3.11 m

Clear span distance in longer direction, l = 4.6 m

As per IS 456:2000, Clause 24.1, Assuming thickness of slab 125mm Assume 20mm cover and 8mm diameter bars

Effective depth, d = 125 - 20 - 8/2 = 101 mmEffective span

As per IS 456: 2000 clause 22.2

Eff. Span along short and long spans is computed as: $L_{ex1} = centre to centre of support = 3.11m$

 $L_{ex2}^{-1} = clear span + eff. depth = 3.11 + 0.101 = 3.211m$

 L_{ex1} = centre to centre of support = 4.6m

 $L_{av2} = \text{clear span} + \text{eff. depth} = 4.6 + 0.101 = 4.701 \text{m}$

Eff. span along short span, $L_{ex} = 3.211m$

Eff. span along long span, $L_{ev} = 4.701 m$

Load calculation

Dead Load on Slab = $0.125 \times 25 = 3.125$ kN/m² Live Load on Slab = 2 kN/m² Floor Finish = 1 kN/m² Total load = 6.125 kN/m² Factored load = $1.5 \times 6.125 = 9.187$ kN/m

Type of slab

Eff. span along short span, $L_{ex} = 3.211 \text{m}$ Eff. span along long span, $L_{ey} = 4.701 \text{m}$ = 4.701/3.211 = 1.46 < 2.Hence, design as two-way slab. **Ultimate design moment coefficients** As per IS 456:2000 table 26, take the moment coefficients for = 1.46 interior panels.

Short span moment coefficients:

Negative moment coefficient, $\alpha x = 0.052$ Positive moment coefficient, $\alpha x = 0.040$

Long span moment coefficients:

Negative moment coefficient, $\alpha y = 0.032$ Positive moment coefficient, $\alpha y = 0.024$

Design moments

$$M_{x}(-ve) = \alpha_{x}W l_{x}^{2} = 0.052 \times 9,187 \times 3.211^{2} = 4.925 \text{kNm}$$

$$M_{x}(+ve) = \alpha_{x}W l_{x}^{2} = 0.040 \times 9.187 \times 3.211^{2} = 3.788 \text{kNm}$$

$$M_{y}(-ve) = \alpha_{y}W l_{x}^{2} = 0.032 \times 9.187 \times 3.211^{2} = 3.031 \text{kNm}$$

$$M_{y}(+ve) = \alpha_{y}W l_{x}^{2} = 0.024 \times 9.187 \times 3.211^{2} = 2.598 \text{kNm}$$

Check for depth

 $M_{\mu} = 0.133 f_{c\nu} bd^2$

 $4.925 \times 10^{6} = 0.133 \times 25 \times 1000 \times d^{2}$ = 38.48 mm < 101mm Hence the effective depth selected is sufficient to resist the design ultimate moment.

Reinforcements along Short and long span directions

As per IS: 456 Annex G Clause. G.1

 $x_{tt}/d = 0.47$ is less than limiting value (0.48) The area of reinforcement is calculated using the relation:

$$M_u = 0.87 f_y A_{st} d\{1 - \left(\frac{A_{st} f_y}{b d f_{ck}}\right)\}$$

			Area (mm ²)
short span	+ve moment(kNm)	3.788kNm	105.71
	-ve moment(kNm)	4.925kNm	138.19
long span	+ve moment(kNm)	2.598kNm	72.098
	-ve moment(kNm)	3.031kNm	84.28

Check for area of steel

As per IS 456 clause 26.5.2.1

A = 0.12 % of bD = $0.0012 \times 1000 \times 125 = 150$ mm

Check for spacing

As per IS 456:2000 Clause. 26.3.3(b) Maximum spacing = 3d or 300mm, whichever is less

(take lesser value)

= 300 mm

 $= 3 \times 101 = 303$ mm (or) 300 mm

Reinforcement provided

Short span: <u>Provide 8mm diameter bars @ 275mm c/c</u> (A_{st prov} = 182.78 mm²)

Long span: Provide 8mm diameter bars @ 275mm c/c

 $(A_{st prov} = 182.78 mm^{2})$ Spacing $_{prov} < spacing _{max}$

Check for shear

As per IS 456:2000, Table13

Shear force, $Vu = 1 \le l_x/2$

= 1x9.187x3.211/2= 14.75kN

As per IS 456:2000 Clause 40.1

Nominal shear stress, $\tau_v = \frac{v_u}{bd}$ = 14.75×10³/ (1000×101) = 0.146N/mm²

Percentage of steel, p = 100 A/bd

= (100 x 201) / (1000 x 101) = 0.20

Permissible shear stress, $\tau_c = 0.33$ N/mm² (IS 456:2000, Table 19)

Design shear strength of concrete = k τ_c

 $= 1.3 \times 0.33 = 0.429 \text{ N/mm}^2$ (IS 456:2000 Clause 40.2)

Maximum shear stress,

 τ_{cmax} = 3.1 N /mm² (IS 456:2000 Table 20) $\tau_{v} < k\tau_{c} < \tau_{cmax}$, so shear reinforcement is not required

Check for deflection

 $A_{st prov} = 182.78 \text{ mm}^{2} \text{ (From 6.2.11)}$ $A_{streq} = 150 \text{ mm}^{2}$ $f_{k} = 0.58x f_{y} A_{streq} / A_{st prov} = 197.53 \text{ N/mm}^{2} =$ $p_{t} = 100 A_{s} / bd = (100 \times 182.78) / (1000 \times 101) = 0.18$ Modification factor = 2 (IS 456:2000, fig. 4) Permissible *l/d* ratio = 32 × 2= 64 Actual *l/d* = (4701/101) = 46.54 < 64 Therefore, deflection is safe with provided depth. **Check for cracking** (As per IS 456:2000, Clause 43.1) 1. Steel provided is more than 0.12% 2. Spacing of main steel < 3d = 3 × 125 = 375 mm

3. Diameter of reinforcement <D/8 = 125/8 = 15.62mm Hence it is safe against cracking.

Reinforcement detailing

Design of Staircase

Material Constants Concrete, $f_{ck} = 25 \text{ N/mm}^2$ Steel, $f_{u} = 415 \text{ N/mm}^2$

Fig.17

Preliminary dimensioning Rise of stair, R = 150 mmTread of stair, T = 300 mmEffective span = 3.65+0.175 = 3.825 m(As per IS 456:2000, Clause 33.1) Let thickness of waist slab = 175 mmUse 12mm dia. bars and clear cover 25mm Load calculation

Self-weight of landing slab = $0.125 \times 25 = 3.125$ kN/m Live load on loading slab = 3 kN/m² Finishes = 1 kN/m

Total load on the landing slab = 7.125 kN/m²

Factored load = 1.5x 7.125= 10.68kN/m

Dead load of waist slab

= Thickness of waist slab×25× $\frac{\sqrt{r^2+t^2}}{t}$ = 0.175×25× = 3.439kN/m

The self-weight of the steps is calculated by treating the step to be equivalent horizontal slab of thickness equal to half the rise. Self-weight of step = $0.5 \times 0.15 \times 25 = 1.875 \text{kN/m}^2$

Floor finish = $1kN/m^2$

Live load = $3kN/m^2$

Total service load= 9.314kN/m²

Consider 1m width of waist slab

Total service load /m run = 9.314×1.0 =

9.314kN/m Total ultimate load = $W_u = 1.5 \times 9.314 = 13.971$ kN/m

Ultimate design moment

Maximum bending moment at the centre of the span is given by,

$$Mu = \frac{Wxl_{g_{11}}^2}{9} = \frac{13.971X3.825X3.825}{9} = 25.55 \text{kNm}$$

Check for the depth of waist slab

$$d = \sqrt{\frac{Mu}{b \times 0.134 \times f_{ck}}} = \sqrt{\frac{25.55 \times 10^6}{1000 x 25 x 0.134}} = 87.33 \text{ mm}$$

d_{provided} > d_{required} Hence the effective depth selected is sufficient to resist the ultimate moment

Reinforcements

 $\frac{\mathrm{Mu}}{\mathrm{b} \times \mathrm{d}^2} = \frac{25.55 \times 10^6}{1000 \times 175 \times 175} = 0.834$

From table 3 of SP 16: 1980,

$$P_{1} = 0.241$$

 $\frac{100Ast}{bd} = P$ $A_{st} = \frac{0.241 \times 1000 \times 175}{100} = 421.75 \text{ mm}$

Maximum spacing for 12 mm Ø bars

Spacing = $\frac{1000 \text{ ast}}{\text{Ast}} = \frac{1000 \times \frac{\pi}{4} \times 12^2}{421.75} = 268 \text{ mm}$ Provide 12 mm Ø bars @ 250 mm c/c spacing

Check for spacing of main steel As per IS 456:2000 Cl. 26.3.3 (b)

Max spacing = (300 or 3d)whichever is less =, whichever is less

= 300 mm

Spacing provided < spacing maximum : Safe

Check for area of steel

As per IS 456:2000, Cl. 26.5.2.1,

A min = 0.12% cross sectional area

$$=\frac{1000 \times 144 \times 0.12}{100} = 172.8 \text{ mm}^2$$

Ast provided > Ast minimum Hence ok.

Distribution reinforcement

0.12% cross sectional area = $\frac{1000 \times 144 \times 0.12}{100}$

= 172.8 mm

Use 8mm Ø bars

Spacing $=\frac{1000 ast}{Ast} = \frac{1000 \times \frac{\pi}{4} \times 8^2}{172.8} = 290.88 \text{ mm}$

Spacing = 250mm Provide 8 mm Ø bars at 250 mm c/c

Check for spacing of distribution steel As per IS 456:2000 Cl: 26.3.3 (b)

Max spacing = (5d or 450mm) whichever is less,

= whichever is less = 450 mm Spacing _{provided} < spacing _{maximum}

🕹 Safe

Check for shear (As per IS 456:2000, Clause 40) Shear, $V_{12} = \frac{W_{12} \times L_g}{2} = \frac{13.971 \times 3.825}{2} = 26.72 \text{ kN}$ = 41.28kN As per IS 456:2000, Clause 40.1

Nominal shear stress, $\tau = \frac{v_u}{bd} = \frac{26.72 \times 10^3}{1000 \times 144} = 0.185 \text{N/mm}^2$

 $P_t = \frac{100 \text{ Ast}}{bd} = 0.241$ = = 0.167

As per IS 456: 2000, Table 19, $\tau = 0.355$ N/ mm² As per IS 456: 2000, Cl: 40.2

Design shear strength of concrete, $(k \times \tau_{c})$

 $= 1.25 \times 0.355 = 0.443$ N/

mm²

As per IS 456: 2000, Table 20 Max. value of shear stress, $\tau_{cmax} = 3.1$ N/ mm² $\tau_{v} < \tau_{c} < \tau_{cmax}$

So shear reinforcement is not required. **Reinforcement detailing of staircase**

Fig.18 Reinforcement detailing of staircase

Design of Isolated Footing

Foundation is that part of the structure which is in direct contact with soil. The R.C. structures consist of various structural components which act together to resist the applied loads and transfer them safely to soil. In general the loads applied on slabs in buildings are transferred to soil through beams, columns and footings. Footings are that part of the structure which are generally located below ground Level. They are also referred as foundations. Footings transfer the vertical loads, Horizontal loads, Moments, and other forces to the soil.

Material constants

Use M_{25} grade concrete and HYSD steel bars of grade Fe_{500} .

Concrete, $f_{ck} = 25 \text{ N/mm}^2$

Steel,
$$f = 415 \text{ N/mm}^2$$

Column size =230 mm x 450 mm Depth of column, a = 450 mm Breadth of column, b = 230 mm Factored axial Load, P = 2505 kN

Safe Bearing Capacity of soil = 200 kN/m

Fig.19 Size of footing

Size of footing

Factored axial Load, $P_{\mu} = 2505 \text{ kN}$

Safe Bearing Capacity of soil = 200 kN/m

Area of footing
$$=\frac{2505}{200} = 12.525 \text{ m}^2$$

Provide a square footing of 4×4 m

Net upward pressure, $P = \frac{2505}{4 \times 4} = 156.56 \text{ kN/m}_{u} = \frac{2}{2} < 200 \text{ kN/m}^{2}$ Hence safe.

Two way shear

Assume a uniform overall thickness of footing,

D = 600 mm.

Assuming 25 mm diameter bars for main steel, effective thickness of footing, 'd' is

d = 600 - 50 - 12.5 = 537.5 mm

The critical section for the two way shear or punching shear occurs at a distance of d/2 from the face of the column, where a and b are the sides of the column.

Hence, punching area of footing = $(a + d)^2 = (0.5375 + 0.45)^2 = 0.975 \text{ m}^2$

Punching shear force = Factored load – (Factored upward pressure \times punching area of footing)

 $= 2505 - (156.56 \times 0.975)$

= 2352.354kN

Perimeter of the critical section = 4 (a+d) = 4 (450+537.5) = 3950 mm

Therefore, from clause 31.6.3 of IS 456-2000

Nominal shear stress in punching or punching shear stress v is computed as,

$$\tau_{v} = \frac{2352.35 \times 1000}{3950 \times 537.5}$$

$$= 1.107 \text{ N/mm}^{2}$$
Allowable shear stress = k $_{s} \times \tau_{c}$
Where, k = (0.5 + β_{c});
 $\beta_{c} = \frac{0.23}{0.45} = 0.511$
k $_{s} = 0.5 + 0.511 = 1.011$ so take k $_{s} = 1$
 $\tau_{c} = 0.25 \times \sqrt{fck} = 1.25$
Allowable shear stress = k $_{s} \times \tau_{c}$

 $= 1 \times 1.25 = 1.25$ N/mm

Since the punching shear stress (1.107 N/mm) < allowable shear stress (1.25 N/mm),

Hence safe.

The check for assumed thickness is done and it is safe.

Hence, the assumed thickness of footing D = 600 mm is sufficient.

The effective depth for the lower layer of reinforcement, d

=600-50-12.5=537.5mm, Effective depth for the upper layer of reinforcement, d =600-50-25-12.5=512.5 mm

Design for flexure

The critical section for flexure occurs at the face of the column.

The projection of footing beyond the column face is treated as a cantilever slab subjected to factored upward pressure of soil.

Factored upward pressure of soil, $P_u = 156.56$ kN/m

Projection of footing beyond the column face, l = (4000-450/2) = 1775 mm

Hence, bending moment at the critical section in the footing is $M_{u} = \frac{P \times l \times l}{2} = \frac{156.56 \times 1.755 \times 1.755}{2} = 241.104 \text{kN/m} - \text{m} \text{ width of}$ footing

The area of steel Ast can be determined using the following moment of resistance relation for under reinforced condition given in Annex G – 1.1 b of IS 456:2000.

The area of reinforcement is calculated using the relation:

$$M_{u} = 0.87 f_{y} A_{st} d\left\{1 - \left(\frac{A_{st} f_{y}}{b d f_{ck}}\right)\right\}$$

241.104

$$\times 10^{6} = 0.87 \times 415 \times A_{st} \times 512.5\{1 - \left(\frac{A_{st} \times 415}{1000 \times 512.5 \times 25}\right)\}$$

Ast=1363.18 mm

The corresponding value of $P_t = 0.267\%$

Hence from flexure criterion, $P_{t} = 0.265 \%$

One way shear

The critical section for one way shear occurs at a distance 'd' from the face of the column

For the cantilever slab, total Shear Force along critical section considering the entire width B is

 $V_u = P_u B (l-d)$

 $= 156.56 \times 4 (1.775 - 0.5125) = 778.103$ kN The nominal shear stress is given by,

$$\tau_v = \frac{V_u}{bd} = \frac{779.103 \times 10^3}{4000 \times 512.12} = 0.37 \text{ N/mm}_v^2$$

From Table 61 of SP 16, find the P $_{c}$ required to have a

minimum design shear strength $\tau_{c_2} = 0.36$ N/mm⁻, $\tau_{v_v} = 0.37 \text{ N/mm}^2 \text{ f}_{ck} = 30 \text{ N/mm}^2.$

For $P_c = 0.26\%$, the design shear strength , $\tau_c = .36N/mm^2 <$ $\tau_{v} = 0.37 \text{ N/mm}$

hence from one way shear criterion provide $P_{ct} = 0.4$ %, with

 $, \tau_{c} = 0.45 \text{ N/mm}^{2}$

Comparing P from flexure and one way shear criterion, provide P = 0.4 % (larger of the two values)

Hence,

Ast =Pt×
$$b \times d/100 = 0.4 \times 1000 \times \frac{600}{100} = 2400 \text{ mm}^2$$

Provide 25mm dia. bars at 200mm c/c.

Therefore, A_{t} provided = 1938.95 mm² > A_{t} required (1363.18

mm). Hence O.K. Check for development length

Sufficient development length should be available for the reinforcement from the critical section.

Here, the critical section considered for L_{A} is that of flexure.

The development length for 25 mm dia. bars is given by

 $Ld = 470 = 47 \times 25 = 1175 \text{ mm}.$

Providing 60 mm side cover, the total length available from the critical section is

0.5(4000-450) = 1775 mm > 1175 mm.

Hence O.K

Check for bearing stress

From IS 456-2000, clause 34.4

The load is assumed to disperse from the base of column to the base of footing at rate of 2H: 1V.

Hence, the side of the area of dispersion at the bottom of footing = $450 + 2 (2 \times 600) = 2850$ mm.

Since this is lesser than the side of the footing (i.e., 4000 mm)

$$A_1 = 4 \times 4 = 16 \text{ m}$$

The dimension of the column is 230 mm x 450mm. Hence, $A = 0.230 \times 0.45 = 0.103 \text{ m}^{-1}$

$$\sqrt{\frac{A_1}{A_2}} = \sqrt{\frac{16}{0.103}} = 12.46 > 2$$

Hence, Limit the value of $\sqrt{\frac{A_1}{A_2}} = 2$

$$\therefore \text{Permissible bearing stress} = 0.45 \times f_{ck} \times \sqrt{\frac{A_1}{A_2}} = 0.45 \times 250 \text{ x}$$

$$2 = 22.5 \text{ N/mm}$$

Actual bearing stress
$$=\frac{Factored load}{Area of column at base} = \frac{2505 \times 10^3}{230 \times 450} = 24.20$$

N/mm²

Since, The Actual bearing stress (22.20N/mm^2) <The Permissible bearing stress (22.50N/mm) according to IS clause34.4, the design for bearing stress is satisfactory. **Reinforcement detail of footing**

Fig. 20 Reinforcement detail of footing

8. RESULT AND CONCLUSION:

Analysis and design of an apartment building having G+10 storeys is done. Analysis is done by using the software ETABS V15.2, which proved to be premium of great potential in analysis and design of various sections. The structural elements like RCC frame, shear wall and retaining walls are also provided. As per the soil investigation report, an isolated footing is provided. The design of RCC frame members like beam and column was done using ETABS. The analysis and design was done according to standard specifications to the possible extend. The various difficulties encountered in the design process and the various constraints faced by the structural engineer in designing up to the architectural drawing were also understood.

FUTURE SCOPE:

- Dynamic analysis can also be done using ETABS.
- Slab and footing can be designed using SAFE.
- In ETABS 2016 V16.2 different types of slabs can be designed.
- The sections designed in ETABS can also be designed by conventional methods or STAAD-PRO and result can be compared.
- The irregular structures subjected to different load cases can also be analyzed and designed in ETABS.

REFERENCES:

- [1]. Reinforced Concrete Design- N. Krishna Raju and R.N. Pranesh
- [2]. Limit State Theory And Design Of Reinforced Concrete- Dr. V. L. Shah and Dr. S. R.Karve
- [3]. Theory Of Structures- S Ramamrutham.
- [4]. Limit State Design- Dr. Ramchandra
- [5]. IS. 456: 2000, Indian Standard Plain and Reinforced Concrete - Code of Practice, Bureau of Indian Standards, New Delhi.
- [6]. IS: 875 (Part I) 1987, Indian Standard Code of Practice for Design Loads (Other than Earthquake) (Dead Loads) for Buildings and Structures, Bureau of Indian Standards, New Delhi.

- [7]. IS: 875 (Part 2) 1987, Indian Standard Code of Practice for Design Loads (Other than Earthquake) (Imposed Loads) for Buildings and Structures, Bureau of Indian Standards, New Delhi.
- [8]. IS: 875 (Part 3) 1987, Indian Standard Code of practice for design loads (other than earthquake) (Wind Loads) for buildings and structures, Bureau of Indian Standards, New Delhi.
- [9]. IS 1893 (Part 1):2002, Indian Standard Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi.
- [10]. SP 16 (1980): Design Aids for Reinforced Concrete to IS 456:1978, Bureau of Indian Standards, New Delhi.
- [11]. SP 34 (1987): Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards, New Delhi.
- [12]. Analysis And Design Of Apartment Building, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 3, March 2016, ISSN 2348 – 7968.
- [13]. Analysis And Design Of A Multi Storied Residential Building Of (Ung-2+G+10) By Using Most Economical Column Method, IJSEAT International Journal of Science Engineering and Advance, Technology, IJSEAT, Vol. 4, Issue 2, ISSN 2321-6905.
- [14]. Structural Analysis of a Multi-Storeyed Building using ETABS for different Plan Configurations, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 3 Issue 5, May – 2014.
- [15]. Comparative Study of Static and Dynamic Seismic Analysis of Multistoried RCC Building by ETAB: A Review, International Journal of Emerging Research in Management & Technology ISSN: 2278-9359 (Volume-5, Issue-12).