Review on K-Mode Clustering

Antara Prakash, Simran Kalera, Archisha Tomar, Aarushi Rai, Pooja Reddy, Prof. Ramesh Babu

prakash.antara12@gmail.com simran21496@gmail.com archisha95@gmail.com aarushirai23@gmail.com pujitha.reddy99@gmail.com School Of Computer Science And Engineering Vellore Institute of Technology, Vellore

School Of Computer Science And Engineering Vellore Institute of Technology, Vellore

1. Abstract:

Cluster is a gathering of items that belongs with a similar class. At the end of the day, comparative articles are assembled in one cluster and different objects are gathered in another cluster. clustering is the way toward making a group of conceptual articles into classes of comparable items. Clustering analysis is comprehensively utilized as a part of numerous applications, for example, statistical surveying, design acknowledgment, information investigation, and picture handling. Clustering can likewise help advertisers find particular gatherings in their client base. Also, they can portray their client bunches in view of the buying designs. Clustering is a popular strategy for implementing parallel processing applications because it enables companies to leverage the investment already made in PCs and workstations. In addition, it's relatively easy to add new CPUs simply by adding a new PC to the network. In this paper we study k-mode clustering and implementing those for date classification.

2. Introduction:

The k-modes clustering algorithm is an extension to the standard k-means clustering algorithm for clustering categorical data. In data mining, k-means is the mostly used algorithm for clustering data because of its efficiency in clustering very large data.

However, the standard k-means clustering process cannot be applied to categorical data due to the Euclidean distance function and use of means to represent cluster centres. To use k-means to cluster categorical data ,we convert each unique category to a dummy binary attribute and used 0 or 1 to indicate the categorical value either absent or present in a data record. This approach is not suitable for high dimensional categorical data.

The k-modes approach modifies the standard k-means process for clustering categorical data by replacing the Euclidean distance function with the simple matching dissimilarity measure, using modes to represent cluster centres and updating modes with the most frequent categorical values in each of iterations of the clustering process. These modifications guarantee that the clustering process converges to a local minimal result and the efficiency of the clustering process is maintained.

3. Algorithm:

Clustering Process -

To cluster a categorical data set X into k clusters, the k-modes clustering process consists of the following steps:

Step 1: Randomly select k unique objects as the initial cluster centres (modes).

Step 2: Calculate the distances between each object and the cluster mode; assign the object to the cluster whose centre has the shortest distance to the object; repeat this step until all objects are assigned to clusters.

Step 3: Select a new mode for each cluster and compare it with the previous mode. If different, go back to Step 2; otherwise, stop.

This clustering process minimises the following k-modes objective function

$$F(U,Z) = \sum_{l=1}^{k} \sum_{i=1}^{n} \sum_{j=1}^{m} u_{i,l} d(x_{i,j}, z_{l,j})$$

 $U = [u]_{i,j}$ is an($n \times k$) partition matrix,

```
Z = \{Z1, Z2, ..., Zk\} is a set of mode vectors and the distance function d(.,.) is defined as either (2) or (3).
```

Since it is essentially same as k-means, the k-modes clustering algorithm is efficient in clustering large categorical data and also produces locally minimal clustering results.

4. Literature Review:

The two different approaches that fall under this are: top-down and bottom-up. The most important difference between k-mode and k-means clustering is he hierarchy. The difference lies from how the algorithm can be implemented o how the results can be interpreted.

Top-down hierarchical clustering

The data is divided into 2 clusters (using k-means with k=2k=2, for example). Then, for each cluster, the process is repeated, until all the clusters are too small or too similar for further clustering, or until a preset number of clusters is reached.

Bottom-up hierarchical clustering

Each data item consists of its own cluster. We then look for the two items that are most similar, and combine them in a larger cluster. The process is repeated until all the clusters that are left are too dissimilar to be gathered together, or until a preset number of clusters is reached.

In k-means clustering, the main objective is to divide the data into k sets simultaneously. A better approach is to take k items from data set as initial representatives for the cluster, assign all items to the cluster whose representative is closest, and then calculate the cluster mean which becomes the new representative, until all clusters stay the same.

The hierarchical clustering methods can further be divided based on the measure of similarity:

Single-link clustering

It considers the distance between two clusters as the minimum distance from any member of one cluster to any member of the other. If similarities are found, the similarity between a pair of clusters is considered to

be the greatest similarity from any member of one cluster to any member of the other. It is also known as the minimum method.

Complete-link clustering

It considers the distance between two clusters as the longest distance from any member of one cluster to any member of the other. It is also known as the maximum method.

Average-link clustering

It considers the distance between two clusters as the average distance from any member of one cluster to any member of the other. It is also known as the minimum variance method.

5. Implementation

Using R-studio:

kmode(data, modes, itrn.max = 10, weight = FALSE)

Arguments

data

Categorical data organised in a matrix, with objects in rows and variables in columns, or data frames.

modes

Either the number of modes or the preset number of cluster modes. A random set of distinct rows in data is assigned as the initial modes.

itrn.max : maximum number of iterations allowed.

weighted

Simple-matching distance between objects, either weighted or unweighted, is used.

4.1 Details

The given data is clustered by the k-mode method which aims to split the items into n groups such that the distance between the item and the the assigned cluster modes is minimised. Conventionally, simple-matching distance is used for determination of the dissimilarity between two items or clusters. The computation takes place by keeping a count of the number of mismatches in the variables encountered. As an alternative, the weighted version of this distance is calculated by the frequencies of the categorical data . If a preset matrix is provided, it might be possible that none of the objects will be closest to one or more modes. In this case few clusters than supplied modes will be returned, intimating a warning.

Values

An object of class "kmodes" which consists of the following components:

Cluster

A set of integer vectors posting to the cluster to which the object is to be allocated.

Size

The number of items/objects in each cluster.

Modes

A matrix of cluster modes.

Withindiff

The distance calculated by simple-matching algorithm within the cluster for each cluster.

Iterations

The number of iterations run by the algorithm.

Weighted

A value indicating whether the weighted distances were used or not.

4.2 DATA SET:

The dataset used (iris species) for the analysis contains 200 data points, further divided into 153 training sets and 47 testing samples, and 4 attributes for each samples which are utilised for classification. Based on the above algorithm, the data has been divided into 3 clusters.

	A	В	C	D	E	F	G	H I	
1	Index	learn/test	epal.length	epal.width	etal.length	etal.width	class	Iris-mythica	Iris-s
2	10	test	4.9	3.1	1.5	0.1	Iris-setosa	0	
3	17	test	5.4	3.9	1.3	0.4	Iris-setosa	0	
4	29	test	5.2	3.4	1.4	0.2	Iris-setosa	0	
5	30	test	4.7	3.2	1.6	0.2	Iris-setosa	0	
6	31	test	4.8	3.1	1.6	0.2	Iris-setosa	0	
7	33	test	5.2	4.1	1.5	0.1	Iris-setosa	0	1
8	36	test	5	3.2	1.2	0.2	Iris-setosa	0	
9	40	test	5.1	3.4	1.5	0.2	Iris-setosa	0	
10	41	test	5	3.5	1.3	0.3	Iris-setosa	0	
11	48	test	4.6	3.2	1.4	0.2	Iris-setosa	0	1
12	51	test	7	3.2	4.7	1.4	Iris-versicolor	0	
13	60	test	5.2	2.7	3.9	1.4	Iris-versicolor	0	
14	76	test	6.6	3	4.4	1.4	Iris-versicolor	0	
15	81	test	5.5	2.4	3.8	1.1	Iris-versicolor	0	
16	86	test	6	3.4	4.5	1.6	Iris-versicolor	0	
17	87	test	6.7	3.1	4.7	1.5	Iris-versicolor	0	
18	89	test	5.6	3	4.1	1.3	Iris-versicolor	0	
19	90	test	5.5	2.5	4	1.3	Iris-versicolor	0	
20	91	test	5.5	2.6	4.4	1.2	Iris-versicolor	N	-
21	101	test	6.3	3.3	6	2.5	Iris-virginica	0	
22	104	test	6.3	2.9	5.6	1.8	Iris-virginica	0	
23	106	test	7.6	3	6.6	2.1	Iris-virginica	0	1
24	117	test	6.5	3	5.5	1.8	Iris-virginica	0	
25	120	test	6	2.2	5	1.5	Iris-virginica	0	
26	123	test	7.7	2.8	6.7	2	Iris-virginica	• 0	
27	127	test	6.2	2.8	4.8	1.8	Iris-virginica	0	
28	136	test	7.7	3	6.1	2.3	Iris-virginica	0	
29	137	test	6.3	3.4	5.6	2.4	Iris-virginica	0	1
30	145	test	6.7	3.3	5.7	2.5	Iris-virginica	0	/
31	151	test	6.32	4	2.25	0.63	Iris-mythica		1
32	152	test	6.24	3.62	2.64	0.56	Iris-mythica	1	1
33	156	test	6.63	3.61	2.51	0.52	Iris-mythica	1	
34	161	test	6.06	3.26	1.99	0.77	Iris-mythica	1	1
35	163	test	6.53	3.45	3.39	0.56	Iris-mythica	1	
36	169	test	6.48	3.67	1.72	0.8	Iris-mythica	1	1
37	172	test	6.72	3.99	2.72	0.75	Iris-mythica	1	
38	173	test	6.47	3.07	1.78	0.73	Iris-mythica	1	
39	174	test	6.81	3.69	3.09	0.52	Iris-mythica	1	

Screen shot of the Data set :

root performed wett, root classified to or th test sumples correctly

4.3 SCREEN SHOTS OF IMPLEMENTATION:

jie Edit View Misc Packages Windows Help Image: Console Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.901613 2.745387 4.393546 3 5.00600 3.073684 5.742105 2.071053 3.073684 5.00600 3.073684 5.00600 3.428000 1.46200 0.246000 Clustering vector: [1] [1] 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.	<pre>File Edit View Misc Packages Windows Help File Edit View Editor Sequence Sequen</pre>	<pre>File file View Misc Packages Windows Help File file file file file file file file f</pre>	RGui (32-bit)		Income in case			
Console Console Sepal.Length Sepal.Width Petal.Length Petal.Width 1 1 5.901613 2.748387 2 6.850000 3.073684 5.006000 3.428000 1.4633871 2 6.850000 3.428000 1.46200 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Image: Consol Image: Consol Sepal.Length Sepal.Width Fetal.Length Petal.Width 5.901613 1 5.901613 2.748387 4.393548 1.433871 1 5.901613 2.748387 4.393548 1.433871 1 5.901613 2.748387 4.393548 1.433871 1 5.901613 2.748387 4.393548 1.462000 0.246000 Clustering vector: [1] 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	Image: Construct of Sepal. Width Petal. Length Petal. Width 1 5.901613 2.748387 4.393548 1.433871 1 5.901613 2.748387 4.393548 1.433871 1 5.901613 2.748387 4.393548 1.433871 3.433871 1 5.901613 2.748387 4.393548 1.433871 3.433871 1 5.901600 3.5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	ile <u>E</u> dit <u>V</u> iew <u>M</u> isc	<u>P</u> ackages <u>W</u> indows	<u>H</u> elp			
R Console Sepal. Length Sepal. Width Petal. Length Petal. Width 1 5.901613 2.748387 4.339546 1.433871 2 6.850000 3.073684 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 33 33 33 33 33 33 33 33 [38] 33 33 33 3 3 3 3 3 3 [1] 33 33 3 3 3 3 3 3 3 3 [1] 33 3	R Console Image: Console Sepal. Length Sepal. Width Petal. Length Petal. Width 1.433871 2 6.850000 3.073684 5.006000 3.073684 5.742105 2 6.850000 3.0426000 1.462000 Clustering vector: [1] 3.3<3.3<3.3<3.3<3.3<3.3<3.3<3.3<3.3<3.3	R Console Image: Console Sepal. Length Sepal. Width Petal. Length Petal. Width 1 1 5.901613 2.745387 2 6.850000 3.073684 3 5.006000 3.422000 1 1 1 1 1 3 3 5.006000 3.422000 Clustering vector: [1] [1] 3 3 [38] 3 3 [38] 3 3 [112] 2 1 [12] 2 2 [14] 2 1 [1] 3.83 3 3.82097 23.8747 15.15100 [1] [1] 9.82097 23.6747 15.15100 [1] "centers" "totss" "withinss" "ifault") 💿 🚑				
R Console Sepal. Length Sepal. Width Petal. Length Petal. Width 1 5.901613 2 6.850000 3.073664 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3.33333333333333333333333333333333333	R Console Image: Console Sepal.Length Sepal.Width Petal.Length Petal.Width 5.901613 2.748387 4.393548 1.433871 2 6.850000 3.073684 5.742105 2.071053 5.006000 S.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	R Console Sepal. Length Sepal. Width Petal. Length Petal. Width 1 5.901613 2 6.850000 3.073864 5.742105 2 6.850000 3.073864 5.742105 2 6.850000 3.128000 1.462000 0.246000 Clustering vector: [1] 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3						
Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.901613 2.749387 4.393548 1.433871 2 6.650000 3.073664 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.901613 2.748387 4.393548 1.433871 2 6.650000 3.073664 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Sepal.Length Sepal.Width Petal.Length Petal.Width 5.001613 2.748387 4.393548 1.433871 6.680000 3.07364 5.7006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	R Console					
<pre>1 5.901613 2.748387 4.393548 1.433871 2 6.85000 3.073684 5.742105 2.071053 3 5.00600 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	<pre>1 5.901613 2.748387 4.393548 1.433871 2 6.850000 3.073684 5.742105 2.071053 3 5.006000 3.422000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	<pre>1 5.901613 2.748387 4.393548 1.433871 2 6.650000 3.073664 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	Sepal.Length Sep	pal.Width Petal	.Length Petal.W	idth		^
<pre>2 6.850000 3.073684 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 2 1 1 1 1</pre>	<pre>2 6.850000 3.073684 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	<pre>2 6.850000 3.073684 5.742105 2.071053 3 5.006000 3.428000 1.462000 0.246000 Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	1 5.901613	2.748387 4	.393548 1.43	3871		
Clustering vector: [1] 33 33 33 33 33 33 33 33 33 33 33 33 33	Clustering vector: [1] \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	Clustering vector: [1] 33 33 33 33 33 33 33 33 33 33 33 33 33	2 6.850000	3.073684 5	.742105 2.07	1053		
Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Clustering vector: [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5.000000	5.120000 1		0000		
<pre>[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	<pre>[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	<pre>[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	Clustering vector	:			Γ	
<pre>[15] 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	<pre>[15] 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	<pre>[15] 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>		3333333	333333333	33333333	3 3 3 3 3 3 3 3 3 3 3	
<pre>[12] 2 2 1 1 2 2 2 2 1 2 1 2 1 2 1 2 2 1 2</pre>	<pre>[12] 2 2 1 1 2 2 2 2 1 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 2 2 2 2 1 2 2 1 2 2</pre>	<pre>[12] 2 2 1 1 2 2 2 2 1 2 1 2 1 2 1 2 2 2 1 2</pre>		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 1	2 2 2 2 1 2 2 2 2	
<pre>[149] 2 1 Within cluster sum of squares by cluster: [1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> </pre>	<pre>[149] 2 1 Within cluster sum of squares by cluster: [1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> </pre>	<pre>[149] 2 1 Within cluster sum of squares by cluster: [1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	[112] 2 2 1 1 2 2	2 2 1 2 1 2 1	2 2 1 1 2 2 2 2	2 1 2 2 2 2 1	2 2 2 1 2 2 2 1 2	
<pre>Within cluster sum of squares by cluster: [1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> ></pre>	<pre>Within cluster sum of squares by cluster: [1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> >> >> >> >> >> >></pre>	<pre>Within cluster sum of squares by cluster: [1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> >> >> >> >> >> >> >> >> >> >></pre>	[149] 2 1					
<pre>[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" > > </pre>	<pre>[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> >> >> </pre>	<pre>[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault" >> >> >> </pre>	Available componen	nts:			E	E
<pre>[6] "betweenss" "size" "iter" "ifault" > > > > </pre>	<pre>[6] "betweenss" "size" "iter" "ifault" > > > > </pre>	<pre>[6] "betweenss" "size" "iter" "ifault" > > > > </pre>	[1] "cluster"	"centers"	"totss"	"withinss"	"tot.withinss"	
			[6] "betweenss"	"size"	"iter"	"ifault"		
> > < < *			>					
			>					
			>					
* * * * * * * * * * * * * * * * * * *			- -					·

🥂 RGui (32-bit)	No. 2 Million 1 Links and Bar Salar I.
<u>File Edit View Misc Packages Windows H</u> elp	
R Console	
[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
[38] 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 2 1 1 1 1	
[75] 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
[112] 2 2 1 1 2 2 2 2 1 2 1 2 1 2 1 2 2 2 2	
Within cluster sum of squares by cluster:	
[1] 39.82097 23.87947 15.15100 (between_SS / total_SS = 88.4 %)	
Available components:	
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "hetweenss" "size" "iter" "ifault"	
>	
>	
> table(iris\$Species, kc\$cluster)	
1 2 3	
setosa 0 0 50 versicolor 48 2 0	
virginica 14 36 0	
>	

5. Applications:

RGui (32-bit) - [R Graphics: Device 2 R File History Resize Windows

Clustering algorithms can be applied in many fields, such as

- Identifying frauds
- Insurance : identification of insurance policy holders with a high claim cost
- Biology : classification of flora and fauna based in its characteristics
- Marketing : discovering group of customers with similar requirements given a database of customer information and previous buying records
- WWW : clustering of weblog information to find similar access patterns.

6. Limitations:

There are various issues that arise with clustering, such as

- current methodologies do not address all the criterion adequately
- a large number of dimensions and huge sets of data items can be complex because of time and space complexity
- the efficiency of the method depends on the definition of distance
- in the absence of a distance measure, its value must be defined, which is problematic in multi-dimensional domains
- the output of the algorithm can be interpreted in several ways.

7. Conclusion:

Determination of grouping in a set of unlabelled information on the basis of its features is the main objective of clustering. There is no absolute "best" criterion which would be independent of the final aim of the clustering. Subsequently, it is the user who must supply the standards, in such a way that the outcome suits suit their requirements.

The above data set has been classified for the categorical data using k-mode clustering data .From this data implementation we got three clusters based on mode values. This paper presents the analysis of k-mode clustering, highlighting its advantages and limitation.

8. References

[1] Anderberg, M.R. 1973. Cluster Analysis for Applications. Academic Press.

[2]Ball, G.H. and Hall, D.J. 1967. A clustering technique for summarizing multivariate data. Behavioral Science, 12:153–155.

[3]Bobrowski, L. and Bezdek, J.C. 1991. c-Means clustering with the l 1 and l ∞ norms. IEEE Transactions on Systems, Man and Cybernetics, 21(3):545–554.

[4]Cormack, R.M. 1971. A review of classification. J. Roy. Statist. Soc. Serie A, 134:321–367.

[5] Dubes, R. 1987. How many clusters are best? An experiment. Pattern Recognition, 20(6): 645–663.

[7]Ester, M., Kriegel, H.P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA: AAAI Press, pp. 226–231.

[8]Guo Tao, Ding Xingu, Li Yefeng, Parallel k-modes. Algorithm based on MapReduce.

[9]S.Aranganayagi, K.ThangaveI, S.Sujatha, New Distance.Measure based on the Domain for Categorical Data.

[10] Guo Tao, Ding Xingu, Li Yefeng, Parallel k-modes. Algorithm based on MapReduce.

[11] https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-447.pdf

[12] https://shapeofdata.wordpress.com/2014/03/04/k-modes/

[13] http://www.daylight.com/meetings/mug04/Bradshaw/why_k-modes.html