
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 11 Nov. 2016, Page No. 18886-18891

Manohar Singh, IJECS Volume 05 Issue 11 Nov., 2016 Page No.18886-18891 Page 18886

Software Reliability Testing Tools: An Overview and Comparison
Manohar Singh

Research Scholar, Department of Computer Science

OPJS University, Churu, Rajasthan

ms_hodcs@yahoo.com

Abstract: Software reliability has been regarded as major quality attribute and still there are very few available standardized

tools. Software reliability is such a significant factor in finalizing the overall quality of software, thus it must be estimated. In this

paper we will discuss various software reliability metrics. A well designed metrics can helps in detection and correction of

requirement faults that will guide in avoidance of error in later stage of software development. A software reliability growth

model is one of the basic techniques used to evaluate the software reliability quantitatively. The software growth model is

required to have a significant performance in term of goodness of fit, reliability etc. In this paper we will summarize some existing

software reliability tools such as CASRE, SMERFS, SOFTREL, SOREL etc. Overall the paper will provide various ways to

enhance software reliability.

1. Software Reliability:

It is believed that software is always correct and once it runs

correctly it will be work rightly forever this gave rise to the

idea of Software Reliability. According to ANSI,

―Software Reliability is defined as the probability of

software operation that is failure-free for a particular period

of time in a particular environment. The probability of

failure-free software operation for a specified period of time

in a specified environment is known as Software reliability.

In highly complex modern software systems, reliability is

most significant feature. Software Reliability reduces

software failures during the development of software and

software quality control in the complex modern software

systems. Software reliability can also be defined for

software as the probability of carrying out without failures

for some specific interval of time. A fault is a defect that

causes or can potentially cause the failure of software when

it is executed [3]. Unpredictability of any software comes

due to the failures or occurrence of faults in the system. As

software does not “exhaust” or “deteriorate”, as a

mechanical or an electronic system does, the changeability

of software is mainly due to bugs or design faults in it.

Reliability is a probabilistic measure that believes that the

incidence of failure of software is a random phenomenon.

Therefore we can say that reliability is a important aspect in

deciding the general excellence of software. Researchers

shift towards the estimation of Software Reliability which

gives rise to the variety of software reliability estimation

tools. There are many software reliability measuring tools

available for users to implement one or more of the software

reliability model to a software development purpose and to

launch the applicability of a particular model to a set of

failure data. A key issue in modeling software reliability lies

in the accessibility of present available tools. Almost all the

tools have command-line interfaces, and use least of the

high-resolution displays that would permit the creation of

menu-driven or direct-manipulation user interfaces [5]. In

measuring software reliability, it is helpful to see high-

resolution displays of these quantities, as well as growing

number of errors and the results of statistical methods used

to establish whether the model being used is feasible for the

present project[7][4].

2. Reliability Process

The reliability method in large terms is a model of the

reliability-oriented features of software development,

operations and maintenance. The set of life cycle actions

and artifacts, together with their attributes and

interrelationships that are combined together to reliability,

consists of the reliability process. The main artifacts of

software life cycle are documents (Software Requirement

Specification), project manuals, reports, design or plans,

code, configuration data and test data. Software reliability is

dynamic and continuous process. In a new product, it begins

at a low figure with respect to its new proposed usage and

eventually reaches a stage near unity at its development. The

correct value of product reliability however is never

accurately known at any point in its life span. These tasks

are performed by the Software Reliability Engineering

(SRE) tools (see Figure 1.):

 Gathering failure information and test time detail

 Calculating estimates of model parameters using the

information obtainable.

 Testing to fit a model with the collected information.

DOI: 10.18535/ijecs/v5i11.29

Manohar Singh, IJECS Volume 05 Issue 11 Nov., 2016 Page No.18886-18891 Page 18887

 Selection of a model to make prediction of left over

faults etc.

 Applying the selected model as per set criteria.

3. Software Reliability Testing

To enhance the performance of software and software

development process, a comprehensive evaluation of

reliability is necessary. Testing software reliability is

significant because it is of immense use for software

developers. Reliability testing is of many types. Some of the

major types of software reliability testing are:

Feature test: Feature testing evaluates the features provided

by the software. Feature testing is conducted in the

following steps:

 Each operation in the software is executed once.

 Operation and their interactions are reduced.

 Each and every operation is checked for its proper

implementation.

After the feature test, load test is conducted.

Load test: Load test is conducted to evaluate the

performance of the software under utmost work load.

Software’s generally performs better up to certain extent of

workload, after that there are significant degradation in

software response time. For example, a web site can be

tested to see how many concurrent users it can sustain

without its performance degradation. This type of testing

mainly helps in checking the reliability of Databases and

Application servers. Load testing also requires software

performance testing, which evaluates how fit some software

performs under workload.

Regression test: Regression testing is used to check if any

new bugs have been developed through fixing of previous

bugs. Regression testing is often conducted after change or

modification in the software features. This testing is cyclic,

depending upon the length and features of the developed

software.

4. Software Reliability Metrics

Software Reliability Measurement is not a precise science.

Though annoying, the hunt of quantifying the software

reliability has never ceased. Until now, we have no good

quality techniques for measuring software reliability.

Measurement of software reliability remains a tricky

problem because we don't have a complete idea of the nature

of Software. There is no apparent description to what

aspects are linked to software reliability. Reliability metrics

are used to convey the reliability of the software product.

The selection of which metric is to be used depends upon

the type of system to which it applies & the requirements of

the application field. We cannot find a suitable way to

measure software reliability, and most of the aspects related

to software reliability. It is attractive to measure somewhat

related to reliability to reveal the features, if we cannot

measure reliability straightforwardly. Some reliability

metrics which can be used to calculate the reliability of the

software product are:

 MEAN TIME TO FAILURE (MTTF): MTTF is

defined as the time interval between the consecutive

failures. An MTTF of 200 means that one failure can be

expected every 200 time units. The time units are totally

dependent on the system and it can still be specified in

the number of transactions. MTTF is applicable for

systems with extensive transactions. For example, it is

appropriate for computer aided design systems where a

designer will work on a plan for several hours as well as

for Word-processor systems.

 MEAN TIME BETWEEN FAILURES (MTBF): We

can combine Mean Time to Failure and Mean Time to

Repair metrics to get the Mean Time between Failures

metric.

Thus, a MTBF of 200 indicates that once the

failure occurs, the next failure will probable occur only

after 200 hours. In this case the time measurements are

real and not the execution time as in the case of MTTF.

 RATE OF OCCURRENCE OF FAILURE

(ROCOF): It estimates the number of failures

occurring in unit time interval. The no. of unexpected

events over a particular time of operation. ROCOF is

the frequency of occurrence with which unpredicted

DOI: 10.18535/ijecs/v5i11.29

Manohar Singh, IJECS Volume 05 Issue 11 Nov., 2016 Page No.18886-18891 Page 18888

behavior is likely to occur. An ROCOF of 0.04 means

that four failures are likely to occur in each 100

operational time unit steps. It is also known as failure

intensity metric.

 MEAN TIME TO REPAIR (MTTR): Once the

failure occurs in the software, sometime it is required to

fix the bug. MTTR measures the average time it is

required to track the errors which is causing the failure

and time required to fix the bug.

 PROBABILITY OF FAILURE ON DEMAND

(POFOD): POFOD is defined as the possibility that the

software system will fail when a service is requested to

it. POFOD is the number of system breakdown given a

number of systems inputs. POFOD is the likelihood that

the system will fail when a service request is made. A

POFOD of 0.2 means that two out of a ten service

requests may result in failure. POFOD is a significant

measure for safety critical systems. It is appropriate for

protection systems where services are demanded

occasionally.

 AVAILABILITY (AVAIL): Availability (AVAIL) is

the probability that the system is accessible or available

for usage at a specific time. It accounts the repair time

and the restart time for the software system. An

availability of 0.990 means that in every 1000 time

units, the system is expected to be available for 990 of

these. The percentage time that a system is available for

use, considering into account deliberate and unintended

downtime. If a system is down an average of five hours

out of 100 hours of operation, its AVAIL is 95%. [1][8]

5. Software Reliability Growth Model

A Software Reliability Growth Model is one of the

elementary techniques to calculate software reliability

quantitatively. All the reliability growth models are based

upon the hypothesis that the reliability of a program is a

function of the number of faults that it contains. The

Software Reliability Growth Model required a good

performance in terms of goodness-of-fit, certainty. In order

to estimate as well as to predict the reliability of software

systems, failure data need to be properly measured by

various metrics during software development and

operational phases. Such models use statistical techniques to

observe the failures during software testing and its

operations to predict the product’s reliability. The data used

in the growth model is taken from where the software will

be deployed. Any software required to function reliably

must undertake widespread testing and debugging. This

process can be a costly and time consuming, and developers

require exact information about how software reliability

grows as a result of this process in order to successfully

manage their budgets and projects. Such type of techniques

permit managers to precisely allocate time, cost, and other

resources to a project, and assess when software has reached

a position where it can be released with some assurance in

its reliability. A number of analytical models have been

derived to check the problem of software reliability

measurement.[5][2] These approaches are indicated below:-

 Times between Failures Models (TBF): In this class

of models, the process under study is the time between

failures. Estimates of parameters are derived from the

detected values of times between the failures and

estimates of software reliability, mean time to next

failure are then obtained from fitted model.

 Failure Count Models (FC): The use of this class of

models is in the number of faults or failures in

particular time intervals rather than in times between

two failures. The failure counts are implied to follow a

known stochastic process with a time dependent distinct

or constant failure rate. Parameters of the failure rate

can be estimated from the observed values of failure

counts or from failure times.

 Fault Seeding Models (FS): The basic approach in this

type of model is to recognize a known number of faults

in a program which is understood to have an

unidentified number of indigenous faults. In this case

program is tested and the practical numbers of seeded

and local faults are counted. From these, an estimate of

the fault content of the program proceeding to seeding

is obtained and used to review software reliability and

various other relevant measures.

 Input Domain Based Models (IDB): This model is

used to generate a set of test cases from an input

distribution which is understood to be agent of the

operational practice of the program. This type of

distribution is difficult to obtain. Because of the

complexity in obtaining this distribution, the input

domain is divided into a set of correspondence classes,

all of these are usually associated with a program

pathway [9][6].

Times Between Failures Model (TBF) Independent times between failures.

 Equal probability of the exposure for each fault.

 Faults are corrected after each occasion

 New faults introduced during rectification.

DOI: 10.18535/ijecs/v5i11.29

Manohar Singh, IJECS Volume 05 Issue 11 Nov., 2016 Page No.18886-18891 Page 18889

Fault Count Model (FC) Testing intervals are free of each other.

 Testing during intervals is logically homogenous.

 Numbers of bugs detected during non-overlap intervals are independent of each

other.

Fault Seeding Model (FS) Seeded faults are randomly scattered in the program.

 Indigenous and seeded faults have equal chance to be detected.

Input Domain Based Model (IDB) Input profile distribution is known.

 Random testing is performed.

 Input domain can be divided into equivalent classes.

Table 1: List of Key Assumptions by Model Category

6. Software Reliability Testing and Growth

Testing Tools

(I) CASRE (Computer-aided software reliability

estimation tool)

CASRE stands for Computer Aided Software Reliability

Estimation. CASRE tool is used as a software reliability

modeling tool that addresses the ease-of-use issue and other

issues. This CASE tool is built on based upon existing

software reliability models, called component models. The

main feature of this tool over others such kinds of tools is its

varied reliability estimations under a prototype which

linearly combines the component models. CARSE features

an enhanced graphical user-interface which significantly

facilitates the tiresome application process for software

reliability estimation. CASRE is actually an expansion of

the public-domain tool SMERFS, and is planned to use both

in a DOS- Windows environment and as well as in UNIX -

windows environment. In this tool users are guided through

the selection of a group of breakdown data and running a

model. Modeling results are shown in a graphical as well as

in tabular form. Apart from this, CASRE contains various

other functionalities. This tool is accomplished to increase

forecast accuracy by mixing the results of various other

models in a linear way. Moreover, CASRE also allows

managers to define their own combinations and

documentation them as component of the CARSE tool

configuration.

(II) SMERFS (Statistical modeling and estimation of

reliability functions for software)

Another software reliability prediction tool is Statistical

Modeling and Estimation of reliability functions for

Software (SMERFS). This is a widely used and a accepted

software application for evaluation of test data for checking

failure rate and fault detection rate forecast. The input to

SMERFS is a collection of values comprises either of the

time between detection of defects or the number of defects

detected per time period. SMERFS then uses maximum

probability method or least squares methods to

approximation the parameters used for one or more of these

models. SMERFS output comprises the parameter estimates,

a measure of the goodness-of-fit and predicted values using

the chi-squared distribution.

(III) SOFTREL

The software reliability process simulator SOFTREL

contains the effects of interrelationships among activities,

and combines all events as piecewise-Poisson Markov

processes with clearly defined event rate functions. The

documentation simulated by Software Reliability process

Simulator consists of requirements, design, interface

specifications, and other entities whose absence or defective

nature can cause errors into subsequently produced code.

Integration and test procedures, management plans, and

other documentation, when deemed not to correlate directly

with fault generation, are excluded. The assumption is that

the likelihood of a fault at any particular time increases

proportionately to the amount of documentation missing or

in error. Requirements analysis and design activities are

currently united in the document construction and

integration phases in SOFTREL. All errors occur either in

proportion to the amount of latest and reused

documentation, to the amount that was changed, deleted,

and added, or to the number of errors that were reworked.

(IV) SRMP (Statistical modeling and reliability

program)

The SRMP was developed by the Reliability and Statistical

Consultants Ltd. of UK in 1988. It is a command-line-

oriented tool developed for an IBM PC/AT and also UNIX

based workstations. SRMP contains nine models. It uses the

utmost likelihood estimation technique to estimate the

model parameters, and includes the following reliability

indicators:

DOI: 10.18535/ijecs/v5i11.29

Manohar Singh, IJECS Volume 05 Issue 11 Nov., 2016 Page No.18886-18891 Page 18890

 Reliability function

 Failure rate

 Mean time to failure

 Median time to failure.

 The model parameters for each model.

SRMP requires an ASCII data file as an input. The file

contains the name of the project, the number of failures

involved in the reliability analysis, and the inter failure

times of all the failures. The input file also describes the

initial sample size used by SRMP for the initial fitting of

each reliability model to the data. The failures which

remained are used by SRMP for accessing a reliability

model’s prediction accuracy.

Parameters

TOOLS Language
Reliability

Rate

Total

Failure

Remaining

Failure

User

Assistance
Graphics

No. of

models

supported

CASRE FORTRAN Y Y Y Y Y 16

SMERFS FORTRAN Y Y Y Y Y 12

SOFTREL C Y Y Y Y Y 2

SRMP FORTRAN Y Y Y Y Y 9

SOREL PASCAL Y Y Y Y Y 4

Table 2: Comparison of Various Reliability Tools

(V) SoREL (Software reliability analysis and prediction)

SoRel is widely used tool for Software Reliability analysis

and prediction. It comprises two parts. They allow

reliability growth tests and applicability of reliability growth

models. SoREL allows two types of failure data processing

i.e. inter-failure data and failure intensity data. The main

actions that can be evaluated are: the mean time to next

failure, the intensity function, the collective number of

failures and the residual failure rate of the software.

In SoREL Four type of reliability growth tests are offered:

arithmetical mean, Laplace test, Kendall test and Spearmann

test (for both failure intensity data and inter-failure). Four

reliability growth models are applied to allow different

kinds of behavior to be modeled:

 a decreasing failure rate which resulting to zero when

time tends to infinity

 a decreasing failure rate which resulting to a non zero

value

 an increasing failure rate which is followed by a

decreasing failure rate

 a model can be analyzed according to its reproductive

capability

The results in SoREL are available into two forms:

 Immediately on the monitor (numerical results and

curves),

 in the form of files, which can be used by other

applications (Excel, Word…), numerical results and

curves [3].

7. Conclusion

Software reliability is a vital research area and software

reliability is a very significant part of software quality.

Software reliability metrics can be used to assess present

software reliability and forecast future. Achieving software

reliability is a key issue in a software industry. But this

reliability is hard to achieve due to software complexity.

Software reliability can be enhanced but complete reliability

is still distinct. This paper discussed various software

reliability metrics and its uses. Apart from this, the paper

discussed several software reliability testing tools and

software reliability growth testing tools available in the

market. Use of these tools can significantly increase the

reliability of software drastically.

Reference

[1] Pankaj Jalote, Brendan Murphy, Mario Garzia, Ben

Errez, “Measuring Reliability of Software Products”.

[2] Gaurav Aggarwal, Dr. V.K Gupta, “Software Reliability

Growth Model”, International Journal of Advanced

Research in Computer Science and Software Engineering,

Jan 2014.

[3] Dileep Sadhankar, Dr. Ashish Sasankar, “An overview

and comparison of Software Reliability tools”, IOSR

Journal of Computer Engineering (IOSR-JCE)

[4] Vaibhav E. Pawar, Amol K. Kadam , “Analysis of

Software Reliability using Testing Time and Testing

Coverage”, International Journal of Advance Research in

Computer Science and Management Studies, May 2015

[5] Razeef Mohd., Mohsin Nazir, “Software Reliability

Growth Models: Overview and Applications, Journal of

DOI: 10.18535/ijecs/v5i11.29

Manohar Singh, IJECS Volume 05 Issue 11 Nov., 2016 Page No.18886-18891 Page 18891

Emerging Trends in Computing and Information Sciences,

Sep 2012

[6] C. Stringfellow, A. Amschler Andrews, “An Empirical

Method for Selecting Software Reliability Growth Models”

[7] Mehraj – Ud - Din Dar, S. M. K. Quadri, “Improving

Software Reliability using Software Engineering Approach-

A Review” Aasia Quyoum, International Journal of

Computer Applications, Volume 10– No.5, November 2010

[8] Gurpreet Kaur, Kailash Bahl, “Software Reliability,

Metrics, Reliability Improvement Using Agile Process”,

IJISET - International Journal of Innovative Science,

Engineering & Technology, Vol. 1 Issue 3, May 2014.

[9] D.Swamydoss, Dr. Kadhar Nawaz, “Enhanced Version

of Growth Model in Web Based Software Reliability

Engineering”, JGRCS 2010

