
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 7 July 2017, Page No. 22097-22100

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i7.32

Sahil Barjtya, IJECS Volume 6 Issue 7 July 2017 Page No. 22097-22100 Page 22097

A detailed study of Software Development Life Cycle (SDLC) Models

Sahil Barjtya
1
, Ankur Sharma

2
, Usha Rani

3

1 Arni University Dept. of Computer Science Engineering

Kangra Himachal Pradesh, India

e-mail: barjtya@gmail.com
2Arni University Dept. of Computer Science Engineering

Kangra Himachal Pradesh, India

e-mail: ankur.sharma.ind@gmail.com
3Arni University Dept. of Computer Science Engineering

Kangra Himachal Pradesh, India

e-mail: usha.arya90@gmail.com

Abstract: This paper provides you comparative study of all the SDLC models and other hybrid methodologies of software development.

This paper provide you all the advantages and disadvantages of the existing model and their limitation and also describe best uses of these

models according to the situation. We described both contemporary models and traditional models which includes Sprial Model,

Incremental Model, Spiral Model and V-Shaped Models are traditional models and Rapid Application Development Model, Agile software

development comes under the contemporary models category.

Keywords: SDLC Models, Waterfall Model, Spiral Models and Agile.

1. Introduction

Software Development Life cycle (SDLC) is the collection

of various steps which followed for the systematic

development, design and maintenance of the software projects

and ensure that all the user requirement is fulfilled with least

amount of resource consumption [1]. These methodologies

help us delivering quality product on the time and as per the

client requirement. These SDLC model is suitable for specific

kind of projects we cannot deploy one single model for all the

software projects because every project having different

requirement that’s why we always collect user requirement

before we select any kind of SDLC model for the project.

We find out that our traditional models such as Waterfall,

Spiral, Incremental and RAD is not able to fulfill clients

satisfaction level so we move a head towards hybrid SDLC

model development such as Agile process is itself a software

development process [2]. Agile process is an iterative approach

in which customer satisfaction is at highest priority as the

customer has direct involvement in evaluating the software [3].

2. Phases of SDLC
SDLC stands for Software development life cycle. It is a

consist of various phases which describes how to develop,

design and maintain the software project ensuring that all the

functional & user requirement, goals and objective are met.

This helps in quality production and the customer satisfaction.

In specific terms that are relevant to SDLC, since SDLC, or

Systems Development Life Cycle, is a cyclical methodology,

phases repeat, so changes can be made to the design in the next

cycle.

1. Requirement Analysis

In the requirement analysis phase of SDLC (Software

Development Life Cycle) where the discuss with client about

his needs regarding software development. The aim of this

phase to grab out all the details of the project or we can say that

requirement analysis phase is to capture the detail of each

requirement and to make sure everyone understands the scope

of the work and how each requirement is going to be fulfilled.

2. Design

The next stage of Software Development Life Cycle is the

Design phase. During the design phase, developers and

technical architects start the high-level design of the software

and system to be able to deliver each requirement. The

technical details of the design is discussed with the

stakeholders and various parameters such as risks, technologies

to be used, capability of the team, project constraints, time and

budget are reviewed and then the best design approach is

selected for the product.

http://www.ijecs.in/
mailto:ankur.sharma.ind@gmail.com

DOI: 10.18535/ijecs/v6i7.32

Sahil Barjtya, IJECS Volume 6 Issue 7 July 2017 Page No. 22097-22100 Page 22098

Figure 1: SDLC phases

3. Implementation

This is the phase where we actually implement all the

requirements which are gathered from the client. In these

phases coding is started as per the requirement of the client. In

this phase every one start doing their work database

administrator start making database programmers start coding

the function or we can say modules’ of the projects and front

end developer stat developing an interactive GUI as per the

requirement of the software.

4. Testing

Testing is the last phase of the Software Development Life

Cycle before the software is delivered to customers. In this

phase we check that our software is working as per our

expectation or not. We also check SRS that software full fill the

entire requirement that mentioned by the client at the time of

agreement.

5. Deployment and Maintenance

Once software development is completed we can deploy the

software according to client use and we can provide there is

usually a maintenance team that look after any post-production

issues. If an issue is encountered in the production the

development team is informed and depending on how severe

the issue is, it might either require a hot-fix which is created

and shipped in a short period of time or if not very severe, it

can wait until the next version of the software.

3. SDLC MODELS

1. Waterfall Model

Waterfall is the traditional model of the SDLC (Software

Development Lifecycle). In this model each phase is completed

before going to next phase. There is no option for going back

after moving to next phase. In waterfall model next phase is

dependence on the result of the previous frame.

Waterfall is easy manageable and simple to understand.

However, in some situation it causes to delay in project

completion because prior to moving next phase we need to

complete first phase. Also, since there is little room for

revisions once a stage is completed, problems can’t be fixed

until you get to the maintenance stage.

The biggest disadvantages of this model the requirement are

clear prior to project development because no client

intervention is allowed in between the project. Therefore if a

requirement is wrong or missing, it won’t become apparent

until the late stages of the life cycle. These points explain

advantages and disadvantages:-

 Easy to understand

 Prevention of error propagation with the help of
verification and validation

 Well defined stages

 We cannot go back to previous phase.

 Less client involvement

2.V Model

V Model is advance waterfall model in which testing

functionality is added at each stage of the project development

instead of the project completion project which leads to better

project development. In this model also we cannot move to

next step until or unless we cannot complete the previous step.

In this model we not get deviated from the project goal due to

each phase testing.

DOI: 10.18535/ijecs/v6i7.32

Sahil Barjtya, IJECS Volume 6 Issue 7 July 2017 Page No. 22097-22100 Page 22099

Figure: V-Shaped Model [4]

 Easy to understand and implement

 Early stage error removal

 High success rate as compare to Waterfall due to
each phase testing

 Mitigate downwards flow of error.

 Not flexible and rigid model

 Highly risk is associated with this model

 Goal is not clear in this model

3.Iterative Model

With the Iterative model, the project can be developed in small

chunks, each updated chunk contain some addition

functionalities. In this model no need of full requirement unlike

V-shaped and Waterfall model prior to stat development of the

software. With each iteration, some additional requirement are

added and makes an updated version of the software and this

process continues until full project not get developed One

advantage of Iterative model over the other SDLC

methodologies is that we get a working version of the

application early in the process and so it less expensive to

implement changes. One disadvantage is that resources can

quickly be eaten up by repeating the process again and again.

Figure: Iterative Model [5]

4.Spiral Model

Spiral model is combination of the systematic and
structured development which takes attributes of iteration
Iterative model and also combined these advantages with
the simplicity of the waterfall model with an additional
heavy risk analysis features. Working of the Spiral model is
divided into four phases (identification, design, build,
evaluation and risk analysis) and these four steps are get
repeated until we will not get complete project. This model
provides incremental updating on the releases of the
software products.
Spiral model is best suited for the highly personalized
software product because in this model user interaction and
evaluation is started from the early stage of the
development But the risk you run is creating a never-ending
spiral for a project that goes on and on.

 Risk analysis is very high in this model

 Early production of software in the life cycle.

 Suitable for large projects

 Very less chance of failure

 Development can be terminated after any spiral and
there will be working system available.

DOI: 10.18535/ijecs/v6i7.32

Sahil Barjtya, IJECS Volume 6 Issue 7 July 2017 Page No. 22097-22100 Page 22100

Figure: Spiral Mode [6]
5.Agile Model
The agile model is hybrid model it is uses advantages of the
both iterative and incremental model by dividing software
product breaking a product into apparatus where on each
cycle or iteration, a working model of a component is
delivered. This model delivers updated releases and each
release contains some incremental updates and after
completion of each iteration product is tested to ensure that
the iteration is acceptable or not. The Agile model
emphasizes association, as the clients, developers and
testers effort mutually all through the project. An benefit of
the Agile model is that it rapidly deliver a operational
product and is measured a very practical development
approach. One drawback of this model is that because it
depends profoundly on client communication, the project
can head the incorrect way if the client is not clear about the
needs or the direction he or she wants to go.

 This model is very adaptable to changing
requirements

 Very munch focused on client feedback

 Dynamic measure of progress

 Overhead is reduced as compare to other model

 Quick removal of horrific designs and erroneous
requirements identified and removed immediately.

 Not feasible for complex project

 Agile model works well for small team

 Small projects that are developed by small, self-
organizing teams

 Agile model adapt frequent changes in the
technology

4. Conclusion

In this paper we provide brief discussion about the various

Software Development Life Cycle (SDLC) models such as

waterfall Model, V-shape Model, Spiral model and agile

software development methodologies. We also provide

advantages and shortcoming of these models with detailed

expiation of the working of these models. This paper helps you

in understanding working of all SDLC models and provides

deep insights about these models. In the comparative study of

agile software development with other software

Development models we conclude that agile project is much

better than other software development process inters of

productivity, performance, faster time cycles, risk analysis

References

[1] Lehman, Tobin J., and Akhilesh Sharma. "Software
development as a service: agile experiences." SRII Global
Conference (SRII), 2011 Annual. IEEE, 2011.

[2] Ahmed, A., et al. "Agile software development: Impact on
productivity and quality." Management of Innovation and
Technology (ICMIT), 2010 IEEE International Conference
on. IEEE, 2010.

[3] Boehm, Barry, and Richard Turner. Balancing Agility and
Discipline: A Guide for the Perplexed, Portable
Documents. Addison-Wesley Professional, 2003.

[4] https://www.roberthalf.com/technology/blog/6-basic-sdlc-
methodologies-the-pros-and-cons

[5] https://www.testingexcellence.com/iterative-model/

[6] https://www.testingexcellence.com/spiral-model-sdlc/

[7] https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-
vs-kanban

https://www.roberthalf.com/technology/blog/6-basic-sdlc-methodologies-the-pros-and-cons
https://www.roberthalf.com/technology/blog/6-basic-sdlc-methodologies-the-pros-and-cons
https://www.testingexcellence.com/iterative-model/
https://www.testingexcellence.com/spiral-model-sdlc/
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

