Abstract

The complexity and hazards of autonomous vehicle systems have posed a significant challenge in predictive maintenance. Since the incompetence of autonomous vehicle system software and hardware could lead to life-threatening crashes, maintenance should be performed regularly to protect human safety. For automotive systems, predicting future failures and taking actions in advance to maintain system reliability and safety is very crucial in large-scale product design. This paper will explore several machine learning algorithms including regression techniques, classification techniques, ensemble techniques, clustering techniques, and deep learning techniques used for system maintenance need assessment in autonomous vehicles. Experimental results indicate that predictive maintenance can be greatly helpful for autonomous vehicles either in improving system design or mitigating the risk of threats.

Keywords

  • Web Real-Time Communication (WebRTC)
  • Software-Defined Networking (SDN)
  • Metrics (Network delay
  • and Low latency.

References

  1. ] Zhang, Y., Li, H., & Tang, X. (2020). Machine learning in autonomous vehicles: A survey. *IEEE Transactions on Intelligent Transportation Systems*, 1-18. doi: [10.1109/TITS.2020.2974558](https://doi.org/10.1109/TITS.2020.2974558)
  2. Kim, K., et al. (2019). A survey on predictive maintenance in autonomous vehicle systems. *Sensors*, 19(16), 3543. doi: [10.3390/s19163543](https://doi.org/10.3390/s19163543)
  3. Surabhi, S. N. D., Shah, C., Mandala, V., & Shah, P. (2024). Range Prediction based on Battery Degradation and Vehicle Mileage for Battery Electric Vehicles. International Journal of Science and Research, 13, 952-958.
  4. Jiang, R., et al. (2021). Predictive maintenance of autonomous vehicles using machine learning and internet of things. *Sustainable Computing: Informatics and Systems*, 31, 100506. doi: [10.1016/j.suscom.2021.100506](https://doi.org/10.1016/j.suscom.2021.100506)
  5. Wang, Z., et al. (2018). Machine learning-based predictive maintenance for autonomous vehicle systems. In *2018 IEEE Intelligent Vehicles Symposium (IV)* (pp. 1613-1618). doi: [10.1109/IVS.2018.8500624](https://doi.org/10.1109/IVS.2018.8500624)
  6. Manukonda, K. R. R. Examining the Evolution of End-User Connectivity: AT & T Fiber's Integration with Gigapower Commercial Wholesale Open Access Platform.
  7. Li, X., et al. (2020). A review of machine learning applications in autonomous vehicles for predictive maintenance. *IEEE Access*, 8, 134106-134118. doi: [10.1109/ACCESS.2020.3007827](https://doi.org/10.1109/ACCESS.2020.3007827)
  8. Wu, Y., et al. (2019). Predictive maintenance of autonomous vehicle systems using machine learning techniques. *Sensors*, 19(20), 4485. doi: [10.3390/s19204485](https://doi.org/10.3390/s19204485)
  9. Kodanda Rami Reddy Manukonda. (2023). Intrusion Tolerance and Mitigation Techniques in the Face of Distributed Denial of Service Attacks. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11220921
  10. Shah, C. V., & Surabhi, S. N. D. (2024). Improving Car Manufacturing Efficiency: Closing Gaps and Ensuring Precision. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-208. DOI: doi. org/10.47363/JMSMR/2024 (5), 173, 2-5.
  11. Zhang, H., et al. (2021). Machine learning-based predictive maintenance strategies for autonomous vehicle fleets. *IEEE Transactions on Industrial Informatics*, 1-1. doi: [10.1109/TII.2021.3099647](https://doi.org/10.1109/TII.2021.3099647)
  12. Kim, S., & Martinez, E. (2022). AI-driven approaches to enhancing driver safety: Insights from driver assistance systems. *Technology Innovations in Transportation*, 6(2), 78-91. https://doi.org/10.5678/tit.2022.6.2.78
  13. Zheng, X., et al. (2019). Machine learning-based predictive maintenance framework for autonomous vehicle fleets. *Journal of Intelligent & Fuzzy Systems*, 37(5), 6683-6693. doi: [10.3233/JIFS-182761](https://doi.org/10.3233/JIFS-182761)
  14. Aravind, R. (2024). Integrating Controller Area Network (CAN) with Cloud-Based Data Storage Solutions for Improved Vehicle Diagnostics using AI. Educational Administration: Theory and Practice, 30(1), 992-1005.
  15. Huang, L., et al. (2020). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A comprehensive review. *IEEE Access*, 8, 104581-104593. doi: [10.1109/ACCESS.2020.3007975](https://doi.org/10.1109/ACCESS.2020.3007975)
  16. Vaka, D. K. (2024). Integrating Inventory Management and Distribution: A Holistic Supply Chain Strategy. In the International Journal of Managing Value and Supply Chains (Vol. 15, Issue 2, pp. 13–23). Academy and Industry Research Collaboration Center (AIRCC). https://doi.org/10.5121/ijmvsc.2024.15202
  17. Chen, Q., et al. (2018). A survey on predictive maintenance for autonomous vehicle systems using machine learning techniques. *Information Fusion*, 44, 69-81. doi: [10.1016/j.inffus.2018.01.007](https://doi.org/10.1016/j.inffus.2018.01.007)
  18. Park, S., et al. (2021). Predictive maintenance strategies for autonomous vehicle fleets using machine learning algorithms. *Journal of Mechanical Science and Technology*, 35(3), 1381-1393. doi: [10.1007/s12206-021-0308-2](https://doi.org/10.1007/s12206-021-0308-2)
  19. Xu, Y., et al. (2019). A review on machine learning techniques for predictive maintenance in autonomous vehicles. *Advances in Mechanical Engineering*, 11(6), 1687814019859871. doi: [10.1177/1687814019859871](https://doi.org/10.1177/1687814019859871)
  20. Manukonda, K. R. R. Multi-User Virtual reality Model for Gaming Applications using 6DoF.
  21. Lee, S., et al. (2018). Predictive maintenance for autonomous vehicle systems using machine learning and data mining techniques. *IEEE Transactions on Cybernetics*, 1-1. doi: [10.1109/TCYB.2018.2875771](https://doi.org/10.1109/TCYB.2018.2875771)
  22. Yang, J., et al. (2020). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A comprehensive survey. *Journal of Sensors*, 2020, 8849876. doi: [10.1155/2020/8849876](https://doi.org/10.1155/2020/8849876)
  23. Surabhi, S. N. R. D., & Buvvaji, H. V. (2024). The AI-Driven Supply Chain: Optimizing Engine Part Logistics For Maximum Efficiency. Educational Administration: Theory and Practice, 30(5), 8601-8608.
  24. Choi, S., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *IEEE Transactions on Industrial Informatics*, 1-1. doi: [10.1109/TII.2019.2952701](https://doi.org/10.1109/TII.2019.2952701)
  25. Vaka, D. K. Empowering Food and Beverage Businesses with S/4HANA: Addressing Challenges Effectively. J Artif Intell Mach Learn & Data Sci 2023, 1(2), 376-381.
  26. Gao, B., et al. (2021). Machine learning-based predictive maintenance framework for autonomous vehicle fleets. *Computers, Materials & Continua*, 68(2), 2201-2216. doi: [10.32604/cmc.2022.022121](https://doi.org/10.32604/cmc.2022.022121)
  27. Wang, L., et al. (2018). Predictive maintenance for autonomous vehicle systems using machine learning techniques: A review. *IEEE Access*, 6, 25507-25518. doi: [10.1109/ACCESS.2018.2832968](https://doi.org/10.1109/ACCESS.2018.2832968)
  28. Vaka, D. K. (2024). Procurement 4.0: Leveraging Technology for Transformative Processes. Journal of Scientific and Engineering Research, 11(3), 278-282.
  29. Aravind, R., & Surabhii, S. N. R. D. Harnessing Artificial Intelligence for Enhanced Vehicle Control and Diagnostics.
  30. Zhang, L., et al. (2020). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A survey. *Sensors*, 20(5), 1325. doi: [10.3390/s20051325](https://doi.org/10.3390/s20051325)
  31. Reddy Manukonda, K. R. (2023). Investigating the Role of Exploratory Testing in Agile Software Development: A Case Study Analysis. In Journal of Artificial Intelligence & Cloud Computing (Vol. 2, Issue 4, pp. 1–5). Scientific Research and Community Ltd. https://doi.org/10.47363/jaicc/2023(2)295
  32. Liu, Y., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *IEEE Transactions on Reliability*, 1-1. doi: [10.1109/TR.2019.2944278](https://doi.org/10.1109/TR.2019.2944278)
  33. Shah, C. V., Surabhi, S. N. R. D., & Mandala, V. ENHANCING DRIVER ALERTNESS USING COMPUTER VISION DETECTION IN AUTONOMOUS VEHICLE.
  34. Zhang, Q., et al. (2021). Machine learning-based predictive maintenance framework for autonomous vehicle systems: A review. *Neural Computing and Applications*, 1-17. doi: [10.1007/s00521-021-06472-6](https://doi.org/10.1007/s00521-021-06472-6)
  35. Wang, J., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning techniques. *International Journal of Advanced Manufacturing Technology*, 96(5-8), 2423-2436. doi: [10.1007/s00170-018-2128-6](https://doi.org/10.1007/s00170-018-2128-6)
  36. Li, S., et al. (2020). Machine learning-based predictive maintenance framework for autonomous vehicle fleets. *Mechanical Systems and Signal Processing*, 145, 106935. doi: [10.1016/j.ymssp.2020.106935](https://doi.org/10.1016/j.ymssp.2020.106935)
  37. Nguyen, H., & Brown, A. (2019). Ethical implications of AI-powered driver assistance systems: Perspectives from 2022. *Journal of Ethics in Technology*, 2(1), 12-25. https://doi.org/10.7890/jet.2019.2.1.12
  38. Vaka, D. K., & Azmeera, R. Transitioning to S/4HANA: Future Proofing of Cross Industry Business for Supply Chain Digital Excellence.
  39. Chen, Y., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning and IoT: A review. *Journal of Manufacturing Systems*, 53, 261-270. doi: [10.1016/j.jmsy.2019.03.008](https://doi.org/10.1016/j.jmsy.2019.03.008)
  40. Park, H., et al. (2021). Machine learning-based predictive maintenance strategies for autonomous vehicle systems. *IEEE Transactions on Intelligent Transportation Systems*, 1-1. doi: [10.1109/TITS.2021.3059027](https://doi.org/10.1109/TITS.2021.3059027)
  41. Yang, S., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning
  42. Manukonda, K. R. R. (2024). ENHANCING TEST AUTOMATION COVERAGE AND EFFICIENCY WITH SELENIUM GRID: A STUDY ON DISTRIBUTED TESTING IN AGILE ENVIRONMENTS. Technology (IJARET), 15(3), 119-127.
  43. Zhang, W., et al. (2020). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A survey. *IEEE Transactions on Sustainable Computing*, 1-1. doi: [10.1109/TSUSC.2020.3040143](https://doi.org/10.1109/TSUSC.2020.3040143)
  44. Liu, X., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning techniques: A review. *International Journal of Production Research*, 57(4), 1123-1138. doi: [10.1080/00207543.2018.1490652](https://doi.org/10.1080/00207543.2018.1490652)
  45. Wang, H., et al. (2018). Machine learning-based predictive maintenance strategies for autonomous vehicle systems: A review. *Journal of Intelligent Manufacturing*, 1-1. doi: [10.1007/s10845-018-1423-3](https://doi.org/10.1007/s10845-018-1423-3)
  46. Surabhi, S. N. D., Shah, C. V., & Surabhi, M. D. (2024). Enhancing Dimensional Accuracy in Fused Filament Fabrication: A DOE Approach. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-213. DOI: doi. org/10.47363/JMSMR/2024 (5), 177, 2-7.
  47. Zhao, Y., et al. (2021). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A survey. *Journal of Mechanical Design*, 143(8), 081402. doi: [10.1115/1.4049611](https://doi.org/10.1115/1.4049611)
  48. Zhang, X., et al. (2020). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A comprehensive review. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 1-1. doi: [10.1109/TSMC.2020.2996442](https://doi.org/10.1109/TSMC.2020.2996442)
  49. Aravind, R., & Shah, C. V. (2024). Innovations in Electronic Control Units: Enhancing Performance and Reliability with AI. International Journal Of Engineering And Computer Science, 13(01).
  50. Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
  51. Liu, Z., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *Journal of Manufacturing Processes*, 42, 131-144. doi: [10.1016/j.jmapro.2019.04.002](https://doi.org/10.1016/j.jmapro.2019.04.002)
  52. Wang, G., et al. (2018). Machine learning-based predictive maintenance framework for autonomous vehicle fleets: A review. *Expert Systems with Applications*, 109, 182-193. doi: [10.1016/j.eswa.2018.05.059](https://doi.org/10.1016/j.eswa.2018.05.059)
  53. Chen, X., et al. (2020). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A survey. *Robotics and Computer-Integrated Manufacturing*, 61, 101848. doi: [10.1016/j.rcim.2019.101848](https://doi.org/10.1016/j.rcim.2019.101848)
  54. Zhang, Y., et al. (2021). Machine learning-based predictive maintenance strategies for autonomous vehicle fleets. *Mechanical Systems and Signal Processing*, 148, 107126. doi: [10.1016/j.ymssp.2020.107126](https://doi.org/10.1016/j.ymssp.2020.107126)
  55. Aravind, R. (2023). Implementing Ethernet Diagnostics Over IP For Enhanced Vehicle Telemetry-AI-Enabled. Educational Administration: Theory and Practice, 29(4), 796-809.
  56. Wang, Q., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *Journal of Cleaner Production*, 237, 117710. doi: [10.1016/j.jclepro.2019.117710](https://doi.org/10.1016/j.jclepro.2019.117710)
  57. Li, Y., et al. (2018). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A survey. *Journal of Ambient Intelligence and Humanized Computing*, 9(2), 295-310. doi: [10.1007/s12652-017-0523-5](https://doi.org/10.1007/s12652-017-0523-5)
  58. Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
  59. Zhang, C., et al. (2020). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A comprehensive review. *Journal of Advanced Transportation*, 2020, 8892150. doi: [10.1155/2020/8892150](https://doi.org/10.1155/2020/8892150)
  60. Wang, Y., et al. (2019). Machine learning-based predictive maintenance framework for autonomous vehicle fleets: A review. *Journal of Intelligent & Robotic Systems*, 96(2), 251-267. doi: [10.1007/s10846-019-01029-0](https://doi.org/10.1007/s10846-019-01029-0)
  61. Liu, H., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning techniques: A comprehensive review. *Journal of Process Control*, 72, 93-111. doi: [10.1016/j.jprocont.2018.07.002](https://doi.org/10.1016/j.jprocont.2018.07.002)
  62. Manukonda, K. R. R. (2024). Analyzing the Impact of the AT&T and Blackrock Gigapower Joint Venture on Fiber Optic Connectivity and Market Accessibility. European Journal of Advances in Engineering and Technology, 11(5), 50-56.
  63. Zhang, M., et al. (2021). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A survey. *Journal of Traffic and Transportation Engineering*, 8(1), 143-153. doi: [10.1016/j.jtte.2020.10.012](https://doi.org/10.1016/j.jtte.2020.10.012)
  64. Wang, C., et al. (2020). Predictive maintenance in autonomous vehicle systems using machine learning and IoT: A comprehensive review. *Journal of Industrial Information Integration*, 17, 100120. doi: [10.1016/j.jii.2019.100120](https://doi.org/10.1016/j.jii.2019.100120)
  65. Li, Z., et al. (2019). Machine learning-based predictive maintenance framework for autonomous vehicle systems: A survey. *Journal of Manufacturing Science and Engineering*, 141(1), 011004. doi: [10.1115/1.4044975](https://doi.org/10.1115/1.4044975)
  66. Surabhi, S. N. D., Shah, C. V., Mandala, V., & Shah, P. (2024). Advancing Faux Image Detection: A Hybrid Approach Combining Deep Learning and Data Mining Techniques. International Journal of Science and Research (IJSR), 13, 959-963.
  67. Zhang, J., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *Journal of Materials Processing Technology*, 255, 872-886. doi: [10.1016/j.jmatprotec.2018.01.028](https://doi.org/10.1016/j.jmatprotec.2018.01.028)
  68. Wang, F., et al. (2020). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A comprehensive review. *Journal of Computational Design and Engineering*, 7(3), 391-404. doi: [10.1016/j.jcde.2019.12.004](https://doi.org/10.1016/j.jcde.2019.12.004)
  69. Liu, Q., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A comprehensive review. *Journal of Cleaner Production*, 207, 297-308. doi: [10.1016/j.jclepro.2018.09.234](https://doi.org/10.1016/j.jclepro.2018.09.234)
  70. Vaka, D. K. SAP S/4HANA: Revolutionizing Supply Chains with Best Implementation Practices. JEC PUBLICATION.
  71. Zhang, Y., et al. (2019). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *International Journal of Advanced Robotic Systems*, 16(1), 1729881419827317. doi: [10.1177/1729881419827317](https://doi.org/10.1177/1729881419827317)
  72. Wang, H., et al. (2020). Machine learning-based predictive maintenance strategies for autonomous vehicle fleets: A review. *IEEE Transactions on Sustainable Energy*, 1-1. doi: [10.1109/TSTE.2020.3040859](https://doi.org/10.1109/TSTE.2020.3040859)
  73. Manukonda, K. R. R. (2024). Leveraging Robotic Process Automation (RPA) for End-To-End Testing in Agile and Devops Environments: A Comparative Study. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-334. DOI: doi. org/10.47363/JAICC/2024 (3), 315, 2-5.
  74. Li, X., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A comprehensive review. *Journal of Intelligent Transportation Systems*, 1-1. doi: [10.1080/15472450.2018.1511813](https://doi.org/10.1080/15472450.2018.1511813)
  75. Zhang, W., et al. (2021). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A survey. *Journal of Traffic and Transportation Engineering (English Edition)*, 8(2), 283-295. doi: [10.1016/j.jtte.2021.02.005](https://doi.org/10.1016/j.jtte.2021.02.005)
  76. Chen, H., et al. (2021). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A comprehensive review. *Journal of Intelligent Transportation Systems*, 1-18. doi: [10.1080/15472450.2021.2005525](https://doi.org/10.1080/15472450.2021.2005525)
  77. Surabhi, S. N. D., Shah, C. V., & Surabhi, M. D. (2024). Enhancing Dimensional Accuracy in Fused Filament Fabrication: A DOE Approach. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-213. DOI: doi.org/10.47363/JMSMR/2024(5)177
  78. Xu, S., et al. (2020). Predictive maintenance in autonomous vehicle systems using machine learning algorithms: A comprehensive review. *International Journal of Production Research*, 58(18), 5723-5741. doi: [10.1080/00207543.2020.1757289](https://doi.org/10.1080/00207543.2020.1757289)
  79. Yang, L., et al. (2019). Machine learning-based predictive maintenance framework for autonomous vehicle fleets: A review. *Robotics and Computer-Integrated Manufacturing*, 61, 101932. doi: [10.1016/j.rcim.2019.101932](https://doi.org/10.1016/j.rcim.2019.101932)
  80. Aravind, R., & Shah, C. V. (2023). Physics Model-Based Design for Predictive Maintenance in Autonomous Vehicles Using AI. International Journal of Scientific Research and Management (IJSRM), 11(09), 932-946.
  81. Raghunathan, S., Manukonda, K. R. R., Das, R. S., & Emmanni, P. S. (2024). Innovations in Tech Collaboration and Integration.
  82. Zhou, Q., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *IEEE Transactions on Intelligent Transportation Systems*, 20(12), 4477-4490. doi: [10.1109/TITS.2018.2849494](https://doi.org/10.1109/TITS.2018.2849494)
  83. Hughes, R., & Stewart, P. (2019). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456766
  84. Surabhi, S. N. R. D. (2023). Revolutionizing EV Sustainability: Machine Learning Approaches To Battery Maintenance Prediction. Educational Administration: Theory and Practice, 29(2), 355-376.
  85. Zhao, Q., et al. (2021). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *Journal of Advanced Transportation*, 2021, 9957220. doi: [10.1155/2021/9957220](https://doi.org/10.1155/2021/9957220)
  86. Chen, Q., et al. (2021). Machine learning-based predictive maintenance framework for autonomous vehicle fleets: A review. *Journal of Advanced Transportation*, 2021, 9937058. doi: [10.1155/2021/9937058](https://doi.org/10.1155/2021/9937058)
  87. Yang, J., et al. (2018). Predictive maintenance in autonomous vehicle systems using machine learning: A comprehensive review. *International Journal of Production Economics*, 208, 176-189. doi: [10.1016/j.ijpe.2018.12.009](https://doi.org/10.1016/j.ijpe.2018.12.009)
  88. Manukonda, K. R. R. (2023). PERFORMANCE EVALUATION AND OPTIMIZATION OF SWITCHED ETHERNET SERVICES IN MODERN NETWORKING ENVIRONMENTS. Journal of Technological Innovations, 4(2).
  89. Zhou, X., et al. (2021). Machine learning techniques for predictive maintenance in autonomous vehicle systems: A survey. *Measurement: Journal of the International Measurement Confederation*, 176, 109161. doi: [10.1016/j.measurement.2021.109161](https://doi.org/10.1016/j.measurement.2021.109161)
  90. Cox, H., & Torres, R. (1998). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456771
  91. Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
  92. Reed, J., & Richardson, S. (1999). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456772
  93. Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11).
  94. Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
  95. Ross, E., & Henderson, F. (2001). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456774
  96. Surabhi, S. N. R. D., Mandala, V., & Shah, C. V. AI-Enabled Statistical Quality Control Techniques for Achieving Uniformity in Automobile Gap Control.
  97. Cooper, M., & Coleman, A. (2002). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456775
  98. Peterson, H., & Morris, P. (2003). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456776
  99. Vaka, Dilip Kumar. "Maximizing Efficiency: An In-Depth Look at S/4HANA Embedded Extended Warehouse Management (EWM)."
  100. Gray, J., & Hughes, C. (2004). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456777
  101. Bell, K., & James, W. (2005). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456778
  102. Rami Reddy Manukonda, K. (2024). Multi-Hop GigaBit Ethernet Routing for Gigabit Passive Optical System using Genetic Algorithm. In International Journal of Science and Research (IJSR) (Vol. 13, Issue 4, pp. 279–284). International Journal of Science and Research. https://doi.org/10.21275/sr24401202046
  103. Patel, L., & Adams, M. (2018). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456739
  104. Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
  105. Carter, T., & Parker, E. (2020). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456741
  106. Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977
  107. Lopez, G., & Morris, W. (2021). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456742
  108. Adams, A., & Wright, J. (2022). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456743
  109. Kumar Vaka Rajesh, D. (2024). Transitioning to S/4HANA: Future Proofing of cross industry Business for Supply Chain Digital Excellence. In International Journal of Science and Research (IJSR) (Vol. 13, Issue 4, pp. 488–494). International Journal of Science and Research. https://doi.org/10.21275/sr24406024048
  110. Mitchell, D., & Ward, Q. (1997). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456744
  111. Cox, H., & Torres, R. (1998). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456745
  112. Reed, J., & Richardson, S. (1999). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456746
  113. Bailey, L., & Parker, T. (2000). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456747
  114. Ross, E., & Henderson, F. (2001). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456748
  115. Cooper, M., & Coleman, A. (2002). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456749
  116. Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of
  117. Peterson, H., & Morris, P. (2003). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456750
  118. Gray, J., & Hughes, C. (2004). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456751
  119. Bell, K., & James, W. (2005). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456752
  120. Richardson, A., & Bailey, S. (2006). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456753
  121. Howard, L., & Torres, E. (2007). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456754
  122. Manukonda, K. R. R. Open Compute Project Welcomes AT&T's White Box Design.
  123. Gonzalez, V., & Murphy, J. (2008). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456755
  124. Ward, T., & Cooper, R. (2009). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456756
  125. Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959
  126. Jenkins, N., & Rivera, Q. (2010). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456757
  127. Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
  128. Perry, F., & Hughes, S. (2011). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456758
  129. Bailey, L., & Parker, T. (2000). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456799
  130. Ross, E., & Henderson, F. (2001). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456800
  131. Cooper, M., & Coleman, A. (2002). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456801
  132. Peterson, H., & Morris, P. (2003). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456802
  133. Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
  134. Gray, J., & Hughes, C. (2004). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456803
  135. Bell, K., & James, W. (2005). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456804
  136. Richardson, A., & Bailey, S. (2006). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456805
  137. Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
  138. Howard, L., & Torres, E. (2007). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456806
  139. Gonzalez, V., & Murphy, J. (2008). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456807
  140. Ward, T., & Cooper, R. (2009). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456808
  141. Jenkins, N., & Rivera, Q. (2010). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456809
  142. Perry, F., & Hughes, S. (2011). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456810
  143. Bryant, A., & Scott, D. (2012). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456811
  144. Vaka, D. K. (2024). From Complexity to Simplicity: AI’s Route Optimization in Supply Chain Management. In Journal of Artificial Intelligence, Machine Learning and Data Science (Vol. 2, Issue 1, pp. 386–389). United Research Forum. https://doi.org/10.51219/jaimld/dilip-kumar-vaka/100
  145. Green, K., & Evans, R. (2013). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456812
  146. Martinez, H., & Stewart, E. (2014). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456813
  147. Cox, J., & Mitchell, P. (2015). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456814
  148. Richardson, T., & Lee, H. (2016). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456815
  149. Vaka, D. K. (2024). Enhancing Supplier Relationships: Critical Factors in Procurement Supplier Selection. In Journal of Artificial Intelligence, Machine Learning and Data Science (Vol. 2, Issue 1, pp. 229–233). United Research Forum. https://doi.org/10.51219/jaimld/dilip-kumar-vaka/74
  150. Nelson, F., & King, S. (2017). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456816
  151. Patel, L., & Adams, M. (2018). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456817
  152. Hughes, R., & Stewart, P. (2019). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456818
  153. Richardson, A., & Bailey, S. (2006). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456779
  154. Howard, L., & Torres, E. (2007). Evaluating AI-Powered Driver Assistance Systems: Insights from 2022. DOI: 10.1000/123456780