
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 13 Issue 04 April 2024, Page No. 26068-26114

ISSN: 2319-7242 DOI: 10.18535/ijecs/v13i04.4808

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26067

Software Engineering Implementation Model on a Tool Rental

System

Khaled Ainieh, Anas Muslemani, Ftoon Kedwan

College of Computer and Cyber Sciences, University of Prince Mugrin, Medina, Saudi Arabia

Abstract

This work presents the software development lifecycle model applied on a rental product store system

development. What motivates the idea of this work is the growing demand for rental stores that offer tools

and other products, and the need for a system to manage and facilitate the rental process. This work aims to

showcase an ideal software engineering implementation example. It also aims to meet the needs of the rental

market and provide a technological solution to support and organize the operations of rental stores and

customers. The study begins by defining and analyzing existing systems and comparing them to the

proposed system using a comparison table. The proposed system includes functional and non-functional

requirements and use case diagrams with descriptions and activity diagrams for each use case. The design

phase includes an overall architecture, component diagram, and class diagram. The candidate solution

pattern plan is used to compare various alternative patterns in order to come up with the most effective

solution.

Keywords: Software Engineering Implementation, Tool Rental System, software development lifecycle

Introduction

Background of the Project

For this work and other similar software engineering projects (Kedwan F. , 2024), there is a need for an ideal

example of a software development lifecycle (SDLC) model to follow. This work invests in the design and

analysis of each phase of the SDLC to assure a correct and sufficient project implementation within

allocated resources. As an SDLC model showcase, a Tool Rental System (TRS) will be developed and each

phase of the development will be thoroughly designed and analyzed, supported with diagrams and tables

where needed.

In today's rapidly evolving world where businesses are expanding and technology is playing an increasingly

significant role, there is a growing need for advanced systems to support various industries. However, the

rental market field has been relatively underserved in terms of technological advancements. Recognizing

this gap, the TRS project aims to revolutionize the tool rental industry by providing a state-of-the-art

solution that addresses the challenges and limitations faced by rental shop owners.

The developed TRS leverages cutting-edge technologies and industry best practices to offer a

comprehensive and efficient tool rental management system. It introduces a new era of organization,

convenience, and safety in the rental process, enabling shop owners to seamlessly handle their operations.

By implementing the TRS, owners can expect enhanced security measures, simplified rental procedures,

streamlined management capabilities, and real-time monitoring of their inventory.

To develop the TRS, extensive research and analysis of the state-of-the-art models of similar systems in the

industry were conducted. Lessons learned from existing TRSs, as well as advancements in related fields,

were carefully examined to incorporate the latest features and functionalities into the TRS. A major focus

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26068

was put on understanding the pain points faced by rental shop owners and customers, and how emerging

technologies could address those issues.

By utilizing the latest advancements in user experience design, database management, security protocols,

and reporting and analytics, the TRS sets a new benchmark in TRS standards. It provides a user-friendly

interface for both rental shop owners and customers, ensuring a seamless and intuitive experience.

Furthermore, the system's robust security measures, such as data encryption and access controls, guarantee

the protection of sensitive information, including customer data and financial records.

The TRS not only serves as a tool rental management system but also acts as a catalyst for business growth.

Its comprehensive reporting and analytics capabilities enable owners to gain valuable insights into their

rental operations, customer preferences, and overall business performance. Armed with this knowledge,

owners can make informed decisions, optimize their inventory, and identify opportunities for expansion and

improvement.

In conclusion, the TRS project addresses the technological gap in the tool rental market by offering a

modern, secure, and efficient system for rental shop owners. By leveraging state-of-the-art models and

incorporating cutting-edge technologies. The TRS empowers owners to overcome challenges, streamline

their operations, and provide an exceptional rental experience for their customers. It is a testament to the

potential of technology to transform traditional industries and create new opportunities for growth and

success.

Objective of the Project

The main objective of this work is to develop an ideal software engineering project as a user-friendly system

with intuitive interfaces that ensure an enjoyable and easy user experience. The system aims to address the

following key objectives:

 Develop User-Friendly Interfaces: The project focuses on designing and implementing interfaces that

are intuitive, visually appealing, and easy to navigate. By prioritizing user-friendliness, we aim to

enhance user satisfaction and improve overall usability.

 Rental Process Follow-up Mechanism: The system will incorporate a mechanism to track and manage

the rental process effectively. This includes features such as monitoring inventory, managing

reservations, tracking rental durations, and handling returns seamlessly.

 Automatic Communication Mechanism: The project aims to establish a streamlined communication

channel between the store and the customers. By implementing an automatic communication

mechanism, users will receive timely notifications, updates, and reminders regarding their rentals,

reservations, and any other relevant information.

 Periodic Income Reports: The system will generate periodic reports that provide insights into the

income generated by the store. These reports will help the management in analyzing revenue trends,

identifying popular rental items, and making informed business decisions.

Scope of the Project

The project will cover the major aspects of a desktop system for almost any rental shops that offer tools,

equipment, products which includes the main following functionalities:

1. Store Tool Panel: give the user full control over the tools in the store (add, update, delete, status of the

product, type, price).

2. Searching Tool: the user can search for specific tools. User can also search for availability, number of

tools and what is the soonest possible time to get the tool if it is unavailable.

3. Customer Management: The system provides customer's information, then system can generate a form

that is printable as a contract.

4. Periodic Report generation: Weekly and monthly periodic reports are printed to report the number and

value of the leased tools.

5. Notification Management: a reminder message is automatically sent to customers shortly before the

end of the lease term to remind them to return the tools. In addition, the system should alert the user

(the owner) in case the customer is exceeded the agreed upon date to communicate with him.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26069

6. Tools Follow-Up Management: All tools currently rented and the information of customers who rented

them are shown with the return date.

Deliverable

The expected outcomes for this rental shop desktop system are as follows:

 Desktop system development using Java Programing language.

 A relational database, which is developed by MySQL.

 Graphical User Interface (GUI), which is developed by JavaFX.

 All architectures and diagrams related to the system are as follows:

 Use case diagrams.

 Class diagram.

 Sequence diagrams.

 Activity diagrams.

 Component diagram.

 Architectural diagram.

Literature Review

After the spread of shops for renting tools and various products, there is a report by Verdon (Verdon, 2019)

found that 57.3% of all consumers are willing to rent, rather than buy, if the products are “well-made and

trendy.” For millennial and Generation Z consumers, the percentage was over 70% (Verdon, 2019).

The automation of the basic processes for managing these stores began to spread as well, and several

products and systems appeared that served this goal. In this literature review, we will try to contrast some of

the previous systems of similar stores. Then, some useful services provided will be chosen, and the previous

mistakes of those systems will be avoided. The goal is to build an efficient and a better system than already

built ones.

Two systems that serve the type of stores with interest in renting products were chosen, Headmaster and

Sharefox. Headmaster is a program that supports equipment rental companies and stores, and it is available

in Arabic language. This program is made by the Arab Software Company (Headmaster, 2010).

The Sharefox rental software comprises an online store that you can use as part of a website or as a

standalone web shop with help pages and a payment solution. This program is optimized for online bookings

(Sharefox, 2021).

Other similar systems include RentMaster and EZRentOut. RentMaster is a comprehensive equipment rental

software designed to streamline rental operations for businesses. It offers a range of features and

functionalities to effectively manage customer relationships, track inventory, create rental contracts,

generate invoices, and provide reporting capabilities. (SOLUTIONS, A RentMaster, 2023)

EZRentOut is a cloud-based equipment rental software designed to simplify and streamline rental operations

for businesses. It offers a range of features and functionalities to efficiently manage customers, track

inventory, create rental contracts, generate invoices, and provide reporting capabilities. (EZRentOut, 2021)

This proposed TRS system aims to organize, facilitate, and manage this process in a safe and effortless way.

Using this system by the owners of tools rental stores, the rental process becomes safer, easier, more

streamlined, manageable, and monitorable.

Table of Comparison

Tables 1 and 2 in the appendix (appendices 1 and 2 consecutively) contain a comparison between the

aforementioned four systems compared to the proposed TRS system. The table shows the similar features

and the differences between them, and the unique features in each one. It also includes some justifications of

missed features in the TRS system and future plans.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26070

The Proposed TRS System

System Specification

 The TRS system allows the admin user (owner) to add, modify and delete the tools they want to rent within

the system database. In addition, the system allows following up with the renters on the leased tools. The

following up involves the names of customers and other information. The follow up tracks the dates of tools'

retrieval, sends a reminder message to customers, and alerts the owner when the deadline is exceeded as a

unique service that the TRS system provides. It also organizes the entire rental process and provides the

ability to search for tools and their condition. The following section discusses the TRS system functional

and nonfunctional requirements in Tables 3-7.

Functional Requirements

 Admin(manager) needs

Table 3: Functional admin requirements table

 User(employee) needs

Table 4: Functional user requirements table

Customer needs

Table 5: Functional customer requirements table

System needs

Table 6: Functional admin requirements table

Non-Functional Requirements

Identifier Requirements

FR-1 The admin shall be able to manage products (add, delete, adjust).

FR-2 The admin shall be able to manage customers information (add, delete, adjust).

FR-3 The admin shall be able to generate a contract with the customer.

FR-4 The admin shall be able to track and check leased products (product name, return

date, customer info).

FR-5 The admin shall be able to manage users (add, delete, adjust).

FR-6 The admin shall be able to generate weekly / monthly report.

FR-7 The admin should be able to search for a specific product.

Identifier Type Requirements

NFR-1 Usability The user should be able to use the system in their job after 7 days of training.

NFR-2 Usability The friendly GUI of the system should get more than 70% of the users satisfied with

the system using the survey before deployment.

NFR-3 Security The system shall ensure that sensitive data, such as passwords, are encrypted when

stored in the database.

NFR-4 Security Users access is authenticated using log in form.

Identifier Requirements

FR-1 The customer shall be able to get a notification message (SMS) as reminder of retrieve date.

FR-2 The customer shall be able to get a generated detailed hard copy contract.

Identifier Requirements

FR-1 The system shall be able to send notification messages for users and customers using SMS.

FR-2 System shall be connected to a database.

Identifier Requirements

FR-1 The user shall be able to manage customers information (add, delete, modify).

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26071

Table 7: Non-functional requirements of the system table

 System Analysis

This section demonstrates a use case diagram which describes the high-level functionalities and scope of the

system. The use case description shows how users will perform tasks and how the system behaves as it

responds to a request (Usability.gov, 2015). Figure 1 (Appendix 3) illustrates the interactions between the

system and its actors which can be individuals, other systems, or external entities. The use case diagram

provides an overview of the system's behavior and the different ways in which users can interact with it to

achieve specific goals or perform certain tasks.

Tables 8-14 (Appendices 4-10) describe each use case. They provide a description of the steps and

conditions required to perform every specific function in the system, as well as how the system interacts

with the user.

Activity Diagram

An activity diagram is a type of UML (Unified Modeling Language) diagram that shows the flow of

activities or actions within a system. It is used to represent the behavior of a system by modeling the flow of

control from one activity to another and to refer to the steps involved in the execution of each use case

(simmytarika5, 2022). Each use case is represented by an activity diagram where it demonstrates the logic of

an algorithm, and describes the steps performed in a UML use case and illustrates a business process or

workflow between users and the system.

The activity diagrams in Figures 2-8 (Appendices 11-17) provide a visual representation of the various

activities and processes within the system. They outline the steps involved in activities such as adding,

modifying, and deleting products, user, customer and creating contracts, generating reports, and sending

notifications. These diagrams illustrate the flow of activities, decision points, and any conditions or loops

that may occur during each process. They serve as a valuable tool for understanding the sequence of actions

and the interactions between different components, allowing for effective analysis and communication of the

system's functionalities.

Sequence Diagram

A sequence diagram is a type of UML (Unified Modeling Language) diagram that shows the interactions

between objects or components in a system over time. Sequence diagrams in Figures 9-12 (Appendices 18-

21) represent the behavior of the TRS system by modeling the flow of messages between the system objects.

The sequence diagrams show the order in which these messages are sent and received, along with the

lifecycle of objects and their interactions. Sequence diagrams are useful for modeling the interactions

between objects in a system and for understanding the flow of control.

System Design

One of the foundations of software engineering and design is to find the best design and pattern that serves

the requirements of the program. This step saves time, effort, and the cost of modifications and

improvements to the project in its last stages. It also makes way for communications between all the

FR-2 The user shall be able to generate a printed contract to the customer.

FR-3 The user shall be able to track and check leased products (product name, return

date, customer info).

FR-4 The user should be able to search for a specific product.

FR-5 The user shall be able to manage products (add, delete, modify).

Table 7: Non-functional requirements of the system table

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26072

stakeholders (user-side, customer, management, etc.) Also, this step draws the outline of the implementation

stage for developers and prevents developers from making incorrect decisions. Therefore, an appropriate

design is built in Figure 13 considering the problem's requirements. Software design is developed and

improved step by step to reach the optimal design.

Architecture Patterns Table

Table 15 presents a comparison of various design patterns commonly used in software development. Each

design pattern has its own distinct characteristics and benefits, making them suitable choices for different

types of projects. By analyzing and evaluating these patterns, developers can determine which ones are

suitable candidates for their specific software development needs.

Design patterns serve as proven solutions to recurring problems in software design. They provide a blueprint

or template that guides developers in structuring their code and organizing their system architecture.

The table represents a comparison of different design patterns, including Client-Server, Multi-tiers, Peer-to-

peer, Model-View-Controller (MVC), Blackboard, Layered, Pipe-and-filter, and Repository. Through this

comparison, some design patterns may emerge as candidates for adoption, while others may be deemed less

suitable for the specific software development project, so they are rejected.

OVERALL ARCHITECTURE DESIGN

Figure 1: Steps for finding the best architecture pattern

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26073

After the identification of the candidate and possible architecture designs (Multi-tier, Layered, MVC) for the

application of this system, we excluded and rejected the least worthy to reach the most appropriate design.

Table 15 Candidate/Reject Most Common Architecture Patterns Table

After that, the candidate patterns were investigated. The multi-tier and layered architecture were then

excluded, and the MVC architecture was preferred. The MVC supports the logical separation of

functionality and enables code reusability and flexibility, allowing for easy adaptation to different user

interfaces and future changes. While layered architecture could be deployed on the same physical device or

unit (IBM_Cloud_Education, 2022) which suites the current project.

Since tier architecture is all about the physical deployment where system spread in different machines so

finally, the MVC architecture was selected for the overall architecture. The chosen architecture shows that

the MVC pattern is one of the most used patterns in all of software engineering projects (Len Bass, Paul

Clements, Rick Kazman, 2012).

The MVC design pattern depicted in Figure 14 is a suitable choice for the RTS system project. MVC is

widely used in web applications and desktop applications and provides a structured and organized approach

to designing and implementing user interfaces.

1. Separation of Concerns: MVC promotes a clear separation of concerns between different components of

the system. The Model represents the data and business logic, the View handles the presentation and

user interface, and the Controller manages the interaction between the Model and the View. This

separation allows for better code organization, maintainability, and scalability.

2. Code Reusability: MVC facilitates code reusability by allowing different components to be developed

independently. The Model can be reused across multiple views, and views can be created or modified

without affecting the underlying data and logic. This promotes modularity and makes it easier to

maintain and extend the application in the future.

3. User Interface Flexibility: With MVC, the View component is responsible for rendering the user

interface. This allows for flexibility in terms of supporting different presentation layers and user

experiences. For example, you can have multiple views for different user roles or device types, all

interacting with the same underlying Model and Controller.

 Architecture

Pattern

Decision Justification

1 Client-

Server

Reject It requires connection with any web server since it’s a desktop application.

2 Multi-tiers Candidate It increases system’s improved scalability, security, and data integrity.

3 Peer-to-

peer

Reject Since the system will not initiate interaction with customers

4 MVC Candidate It promotes separation of concerns by dividing the application logic into three

distinct components: Model, View, and Controller. This separation enhances

maintainability and code readability.

5 Blackboard Reject The system does not require artificial intelligence approach which handles

complex problems.

6 Layered Candidate Layers enable logical separation of kinds of components and provide

structure for communication between components of systems.

7 Pipe-and-

filter

Reject The system is not completely automated and needs a lot of decisions and

manual work.

8 Repository Reject TRS system does not share data (like order and configurations) between

different customers, but it needs the separation between each order. Hence,

the system does not ask for central shared database for all components.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26074

Component Diagram

The component diagram's main purpose is to show the structural relationships between the components of a

system (Bell, 2004). Component diagram provides a visual representation of the components that put

together up to build a system, as well as the relationships between those components. This can be useful for

understanding the architecture of a system. The component diagram in Figure 15 was generated by drawing

a manager for each use case in the use case diagram. After reading and analyzing the requirements, the

appropriate relationships between the components were generated indicating and which component requests

data (consumer) and which one provides data(provider) using an interface.

Class diagram

Class diagram is used to represent classes, interfaces, inheritance, collaboration, and association

relationships between the classes of the system. In addition to capturing classes, interfaces, inheritance,

collaboration, and association relationships, the class diagram serves as a visual tool for understanding the

overall architecture and structure of the system. It helps in identifying the key entities and their interactions,

enabling developers to comprehend the system's functionality at a higher level. The class diagram also aids

in identifying potential design flaws or missing components, allowing for timely adjustments and

improvements. Moreover, it facilitates communication and collaboration among project stakeholders, as it

provides a common language and reference point for discussing system design and implementation. Overall,

the class diagram plays a crucial role in the software development process, providing a foundation for

building robust and well-structured systems.

The class diagram in Figure 16 represents the final and approved version of the system's design. It has

undergone thorough review and refinement to ensure its accuracy and alignment with the project

requirements. The diagram depicts the main classes and their relationships, capturing the essential

components and interactions within the system. The attributes and methods included in each class have been

carefully selected and validated to support the system's functionality effectively. This class diagram serves

as a reliable blueprint for the implementation phase, guiding developers in building the system according to

the specified design specifications.

Since the design patterns are typical solutions to commonly occurring problems in software design

(Refactoring.Guru., n.d.), so patterns were used as a solution for the current system.

Figure 2: MVC architecture pattern of the system

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26075

There are some differences in the association signs from a book to another and between different websites

(Nishadha, 2022), so the focus was specifically on the relation composition and the aggregation so following

the standards in the adopted "creately" website. This website provides a very common Visual Workspace for

UML style.

The website differentiates between aggregation, where the contained classes are not strongly dependent on

the lifecycle of the container, and the composition which is contained class that will be destroyed when the

container class is destroyed (Nishadha, 2022).

Project Implementation

Figure 4: TRS Class diagram

Figure 3: Component diagram for TRS

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26076

Project Implementation Overview

The implementation phase of the RTS system project marks a significant milestone in the development

process, bringing the system's functionalities to life. During this phase, various windows and interfaces have

been designed and developed to provide users with a seamless and intuitive experience. These windows

encompass essential modules such as login, home, product management, customer management, contract

creation, report generation, and user management. Each window serves a specific purpose, allowing users to

perform tasks related to their roles and responsibilities within the RTS system. The system incorporates

features like data retrieval from the database, input validation, and user-friendly interfaces to ensure

efficiency, accuracy, and user satisfaction. This section will provide an in-depth exploration of each

window, including screenshots, detailed descriptions, and functionality highlights, to offer a comprehensive

understanding of the implemented RTS system.

Technology Stack:
The RTS system has been implemented using the following technology stack:

 Java Programming Language: Java was chosen as the primary programming language for its robustness,

platform independence, and extensive ecosystem of libraries and frameworks.

 JavaFX Framework: JavaFX was utilized as the framework for building the graphical user interfaces

(GUIs) of the system. It provides a rich set of UI components, event handling mechanisms, and layout

management capabilities.

 MySQL Database Management System (via phpMyAdmin): MySQL, a popular relational database

management system, was employed to store and manage system data. phpMyAdmin, a web-based

administration tool, was used to facilitate database management tasks.

 XAMPP Development Environment: XAMPP (Cross-Platform, Apache, MySQL, PHP, and Perl) was

utilized as a development environment. It combines the Apache web server, MySQL database server, and

PHP interpreter, providing a comprehensive platform for web application development and testing.

XAMPP was chosen from many alternative software development platforms (Kedwan F. H., 2019).

 Scene Builder UI Design Tool: Scene Builder, a visual layout tool, was used to design and create

graphical user interfaces for the RTS system. It offers a drag-and-drop interface, simplifying the process

of building complex UI layouts.

 CSS (Cascading Style Sheets) Styling: CSS was employed for styling the user interfaces, allowing for

customization of colors, fonts, layouts, and other visual aspects of the system.

 Libraries:

o javax.mail: The javax.mail library was used for email functionality, enabling the system to send email

notifications and communications to users.

o MySQL Connector/J: The MySQL Connector/J library provided the necessary JDBC driver for

establishing the connection between the Java application and the MySQL database.

By leveraging Java as the programming language, JavaFX as the GUI framework, MySQL via

phpMyAdmin for database management, XAMPP as the development environment, Scene Builder for UI

design, and incorporating CSS for styling, along with the javax.mail and MySQL Connector/J libraries, the

RTS system implementation benefited from a comprehensive technology stack.

Database Schema:
Tables 16-20 (Appendices 22-26) represent the RTS system database schema. The relationships between the

tables in the RTS system are explained hereafter:

 One-to-Many Relationship: users table to contract table. The users table has a primary key (id). The

contract table has a foreign key (user_id) referencing the users table's primary key. This relationship

indicates that one user can have multiple contracts, but each contract belongs to only one user.

 One-to-Many Relationship: customer table to contract table. The customer table has a primary key (id).

The contract table has a foreign key (customer_id) referencing the customer table's primary key. This

relationship signifies that one customer can have multiple contracts, but each contract is associated with

only one customer.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26077

 Many-to-Many Relationship: contract table to product table. The contract table has a primary key (id).

The contract product table serves as a junction or associative table. The contract product table has

foreign keys (contract_id and product_id) referencing the contract table and product table's primary

keys, respectively. This relationship allows multiple products to be rented in a contract, and a product

can be rented in multiple contracts.

In summary, the users table and customer table have one-to-many relationships with the contract table, while

the contract table has a many-to-many relationship with the product table through the contract product table.

System Windows:

TRS is a comprehensive software solution designed specifically for tool rental businesses. It provides a user-

friendly interface and a range of features to streamline operations and enhance efficiency. Here is an

overview of the main windows/screens in the TRS system:

RTS system Login page Description:
The login page, Figure 17 (Appendix 27) serves as the entry point for authorized users to access the RTS

system. The login page showcases a visually appealing and professional design. At the top-left corner, a

distinctive and tastefully designed logo/icon representing the RTS system prominently displayed. The

logo/icon adds a touch of branding and enhances the system's visual identity.

As shown in Figure 17, the login page presents a clean and intuitive user interface, designed to provide a

seamless login experience. The page features a prominently placed login form, consisting of fields for

username and password input. The simple yet elegant design of the login page sets the tone for the user-

friendly nature of the RTS system.

The main methods in the Log in component (class) are as follows:

1. isLogin(Admin ad): Checks whether the provided Admin object's username and password match an

entry in the "user" table in the database. It executes an SQL query to retrieve the user with a matching

username and password and returns true if a result is found, indicating a successful login.

2. getUserRole(String username): Retrieves the role of a user from the "user" table in the database based

on the provided username. It executes an SQL query to retrieve the user's role and returns the role as a

String. If the user role is not found, it returns null (which can be handled accordingly).

These methods handle database operations related to user login, authentication, and role retrieval.

RTS system Home page Description:
Figure 18 (Appendix 28) showcases the home page of the RTS system, offering a centralized hub for

managing various aspects of the rental process. The page design demonstrates a thoughtful arrangement of

buttons and informative elements, contributing to an efficient user experience.

At the center of the page, attention is drawn to a visually appealing display that highlights the system's

advantages. Captivating shapes and concise descriptive text emphasize the system's key benefits, such as

efficiency, quickness, and productivity. This feature aims to convey the system's value proposition and

capture users' attention.

Moving towards the navigation section, the home page prominently features several buttons that enable

users to perform essential actions. The "Product" button grants access to tools and resources related to rental

items. The "User" button facilitates management of user accounts and permissions. The "Customer" button

supports efficient handling of customer information. The "Contract" button serves as a gateway for creating

and managing rental agreements and associated documentation of the rental process. The "Notifier" button

enables users to set up notifications and reminders. The "Report" button provides a comprehensive view of

monthly activities and enables users to explore valuable insights and information. Lastly, the "Log Out"

button ensures secure logout from the system, maintaining data confidentiality and user privacy.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26078

The Home window serves as the main dashboard for regular users within the RTS system, providing them

with convenient access to key functionalities. This window allows regular users to manage products,

customers, contracts, notifications, and perform the necessary actions within their assigned responsibilities.

RTS system Product Management Window Description:

Figure 19 (Appendix 29) illustrates the Product Management Window of the RTS system, offering a

comprehensive view of the stored products and efficient tools for managing them.

The central focus of the window is a well-organized table that displays essential product information. The

table consists of columns such as "Product ID," "Name," "Category" (or model), "Price," and "Status." This

tabular representation enables users to quickly grasp details about the products stored within the system. The

"Product ID" column provides a unique identifier for each item, while the "Name" column specifies the

product's name or title. The "Category" column identifies the product's model or category, facilitating easy

categorization and retrieval. The "Price" column displays the cost associated with each product, aiding in

pricing and financial management. Lastly, the "Status" column indicates the availability of the product,

distinguishing between "Available," "Rental," or "Faulty" states.

In the lower-left corner of the window, three buttons— "Add," "Modify," and "Delete" — provide

convenient options for managing the product inventory. The "Add" button enables users to input new

product details into the system, facilitating the addition of new items. The "Modify" button allows users to

update and edit existing product information, ensuring accurate and up-to-date records. The "Delete" button

grants the ability to remove products that are no longer in use or have become obsolete.

At the top of the window, a prominently positioned search field allows users to search for specific products

by their names. This search functionality streamlines the process of finding products, enhancing

productivity, and enabling quick access to the desired items.

The window also includes a button in the top-left corner, providing easy navigation back to the home page.

This convenient button ensures smooth transitions between different modules or functionalities of the

system, promoting a user-friendly experience.

Here are the main methods used in the product component(class):

1. insert(ModelProduct product): Inserts a new product into the "product" table in the database. It

prepares an SQL INSERT statement with the product details (name, category, price, and status) and

executes it to add the product to the database.

2. modify(ModelProduct product): Modifies an existing product in the "product" table based on the

selected Id value. It prepares an SQL UPDATE statement with the updated product details and executes

it to update the corresponding entry in the database.

3. delete(int id): Deletes a product from the "product" table based on the selectedId value. It prepares an

SQL DELETE statement and executes it to remove the product from the database.

4. getAllProduct(): Retrieves all products from the "product" table. It executes an SQL SELECT

statement and retrieves the product data from the result set. Then, it creates ModelProduct objects and

populates them with the retrieved data. The objects are added to an ObservableList and returned.

5. searchProduct(String nameS): Searches for products in the "product" table based on a provided name

pattern. It prepares an SQL SELECT statement with a LIKE condition to match the product names

containing the specified pattern. It retrieves the matching products from the result set, creates

ModelProduct objects, and adds them to an ObservableList. The list of matching products is returned.

These methods handle the database operations related to managing products, such as inserting, modifying,

deleting, retrieving all products, and searching for products based on name.

RTS system Customer Management Window Description:

Figure 20 (Appendix 30) showcases the Customer Management Window of the RTS system, providing a

user-friendly interface for efficient management of customer information. The window prominently displays

a range of customer details, allowing for comprehensive tracking and administration. The customer

information fields include the automatically generated "Customer ID," which serves as a unique identifier

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26079

for each customer. The "Customer Name" field captures the name of the customer, facilitating easy

identification. The "Customer NIC" (National Identity Card) field stores the national identification number

associated with the customer, ensuring accurate record-keeping. The "Customer Address" field captures the

email address of the customer, facilitating communication. Finally, the "Customer Phone" field stores the

contact number of the customer, enabling efficient customer outreach.

Similar to previous windows, a search field is positioned at the top of the window, enabling users to search

for specific customers by their names or other relevant criteria. This search functionality simplifies the

process of locating and accessing customer records, enhancing productivity.

The window also features a button in the top-left corner, providing easy navigation back to the home page,

allowing users to switch between different modules or functionalities effortlessly.

Located in the lower-left corner of the window, intuitive buttons— "Add," "Modify," and "Delete" — offer

convenient options for managing customer information. The "Add" button facilitates the addition of new

customer details into the system, ensuring seamless integration of new customer records. The "Modify"

button allows users to update and edit existing customer information, ensuring accurate and up-to-date

records. The "Delete" button enables the removal of customer records when necessary.

Here are the main methods in the customer component(class):

1. insert(ModelCustomer customer): Inserts a new customer into the "customer" table in the database,

using the provided customer model object.

2. modify(ModelCustomer customer): Modifies an existing customer in the "customer" table in the

database, using the provided customer model object and the selected customer ID.

3. delete(int id): Deletes a customer from the "customer" table in the database, based on the provided

customer ID.

4. getAllCustomers(): Retrieves all customers from the "customer" table in the database and returns them

as an observable list of ModelCustomer objects.

5. searchCustomer(String nameS): Searches for customers in the "customer" table in the database based

on a provided name string and returns the matching customers as an observable list of ModelCustomer

objects.

These methods handle various database operations related to customers, such as inserting, modifying,

deleting, retrieving all customers, and searching for customers based on their names.

RTS system User Management Window Description:

Figure 21 (Appendix 31) showcases the User Management Window of the RTS system, providing an

interface for managing user accounts and their associated details. The window features a table that displays

user information in an organized manner. The columns in the table include "ID," "Username," "First Name,"

"Last Name," "Email," and "Role." The "ID" column serves as a unique identifier for each user, facilitating

easy identification and reference. The "Username" column displays the username chosen by each user

during account creation. The "First Name" and "Last Name" columns present the respective first and last

names of the users. The "Email" column shows the email address associated with each user account. Finally,

the "Role" column indicates whether a user has an "Admin" or "Regular User" role, distinguishing between

different levels of access and permissions within the system.

Here is the main method of the user component (class):

1. insert(ModelUser user): Inserts a new user into the database. It prepares an SQL INSERT statement to

add the user's information (username, first name, last name, email, and role) to the "user" table.

2. modify(ModelUser user): Updates an existing user in the database. It prepares an SQL UPDATE

statement to modify the user's information based on the provided ModelUser object. The update is

performed based on the user's ID (selectedId).

3. delete(int id): Deletes a user from the database. It prepares an SQL DELETE statement to remove the

user from the "user" table based on the provided user ID.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26080

4. getAllUser(): Retrieves all users from the database. It executes an SQL SELECT statement to fetch all

rows from the "user" table. The retrieved data is used to populate ModelUser objects, which are added

to an observable list (userList). The observable list is then returned.

5. searchProduct(String nameS): Searches for users in the database based on a provided username

pattern. It executes an SQL SELECT statement with a LIKE condition to find users whose username

matches the pattern. The retrieved data is used to populate ModelUser objects, which are added to an

observable list (userList). The observable list is then returned.

These methods provide functionality to insert, update, delete, retrieve, and search for user information in the

database. It allows you to perform CRUD (Create, Read, Update, Delete) operations on user data within

your application.

RTS system Report Window Description:

Figure 22 (Appendix 32) showcases the Report Window of the RTS system, providing a user-friendly

interface for generating comprehensive reports. The window includes a field where users can enter the

desired month number to retrieve information related to that specific month. Once the month number is

entered, users can click on the "Refresh" button located at the top-right corner of the window. This action

triggers the retrieval of data from the database, populating various fields with the relevant information.

Upon refreshing, the window displays important data based on the specified month. Fields such as "Total

Contracts for this Month" show the total count of contracts created during the selected month, providing an

overview of rental activity. The field "New Customers Added this Month" indicates the number of new

customers who have been added to the system within the specified month, facilitating tracking of customer

acquisition. The "Total Revenue for the Month" field presents the cumulative revenue generated from all

contracts during the selected month, offering a snapshot of financial performance. The "Total Products

Rented this Month" field showcases the total count of products rented during the selected month,

highlighting the utilization of rental inventory.

Furthermore, the window provides insights into the "Top 5 Most Popular Products Rented this Month,"

identifying the products that have been rented most frequently during the specified month. This information

aids in understanding customer preferences and assists in making informed decisions regarding inventory

management. For easy navigation, a "Back Home" button is conveniently placed in the top-left corner of the

window, allowing users to return to the home page with a single click.

Here are the main methods used in report component(class):

1. connectToDatabase(): Establishes a connection to the database using the ConnectionDB class.

2. getContractCountForMonth(String month): Retrieves the count of contracts for a given month. It

executes an SQL query that counts the number of rows in the "contract" table where the month of the

date matches the specified month. The count is returned as an integer.

3. getCustomerCountForMonth(String month): Retrieves the count of customers for a given month. It

executes an SQL query that counts the number of rows in the "customer" table where the month of the

date matches the specified month. The count is returned as an integer.

4. getTotalRevenueForMonth(String month): Retrieves the total revenue for a given month. It executes

an SQL query that calculates the sum of the "total_cost" column in the "contract" table where the month

of the date matches the specified month. The total revenue is returned as a double.

5. getProductCountForMonth(String month): Retrieves the count of products rented for a given month.

It executes an SQL query that counts the number of rows in the "contractproduct" table where the month

of the rental_date matches the specified month. The count is returned as an integer.

6. getTopRentedProductsForMonth(String month): Retrieves the top 3 rented products for a given

month. It executes an SQL query that joins the "contractproduct" and "product" tables, groups the

results by product name.

These methods provide functionality to generate reports based on contract counts, customer counts, total

revenue, product counts, and top rented products for a specific month.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26081

RTS system Contract Management Window Description:

Figure 23 (Appendix 33) displays the Contract Management Window of the RTS system, providing a

comprehensive interface for creating rental contracts and managing associated details. The top part of the

window consists of input fields to capture essential contract information. Users can input the desired date for

the contract, while the "Customer Name" dropdown allows for easy selection of the customer associated

with the contract. The "Contract ID" field is automatically generated by the system, serving as a unique

identifier for each contract.

The center part of the window focuses on organizing the product details and facilitating the rental process.

Users can select the product name from a dropdown list, which dynamically populates the corresponding

"Product ID." The "Product Name" field displays the selected product name for reference. The "Cost per

Hour" field is automatically retrieved from the database based on the selected product name, ensuring

accurate pricing. The "Period in Hours" field allows users to specify the rental duration in hours for the

selected product. Additionally, the "Total per Item" field displays the calculated total cost for the rental of

each item, based on the cost per hour and rental period.

Towards the bottom of the center part, three fields provide crucial information for financial management.

The "Total" field calculates the total cost for all items rented, considering the individual totals per item. The

"Deposit" field allows users to input the deposit amount made by the customer. Finally, the "Balance" field

calculates the outstanding balance by subtracting the deposit amount from the total cost.

At the top-right corner of the window, a prominently placed "Save" button allows users to save the contract

information entered and finalize the rental agreement. This convenient button ensures that all contract details

are securely stored and accessible for future reference. Additionally, in the top-left corner of the window, a

"Back Home" button provides easy navigation back to the home page. This button enables users to switch

between different modules or functionalities seamlessly, enhancing user experience and workflow efficiency

Here are the main methods of this component(class):

1. getAllCustomerNames(): Retrieves a list of all customer names from the "customer" table in the

database.

2. getNextContractID(): Retrieves the next contract ID by finding the maximum ID from the "contract"

table in the database and incrementing it by 1.

3. getAllProductNames(): Retrieves a list of all product names from the "product" table in the database.

4. getAllProductNamesWithCategory(): Retrieves a list of all product names along with their categories

from the "product" table in the database.

5. getProductIdByName(String productName): Retrieves the product ID for a given product name from

the "product" table in the database.

6. getProductCostByName(String productName): Retrieves the cost of a product for a given product

name from the "product" table in the database.

7. getCustomerIdByName(String customerName): Retrieves the customer ID for a given customer

name from the "customer" table in the database.

8. saveContractProduct(int productId, String productName, int period, int contractId): Saves a

contract product by inserting the provided product ID, product name, period, and contract ID into the

"contractproduct" table in the database.

These methods perform various database operations such as retrieving data, inserting data, and processing

query results related to contracts, customers, and products

Security Measures:

The RTS system incorporates several security measures to ensure the confidentiality, integrity, and

availability of the system. These measures have been implemented to protect user data, prevent unauthorized

access, and mitigate potential vulnerabilities.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26082

Firstly, the system enforces a robust authentication mechanism through the login page. Users are required to

provide their username and password to access the system. This helps verify the identity of users and

restricts access to authorized individuals only. Additionally, the system differentiates between administrators

and regular users, providing specific privileges and access rights based on user roles.

This code snippet is used in LoginControl class:

public boolean isLogin(Admin ad) throws SQLException {

 st = ConnectionDB.OpenConnection().createStatement();

 ResultSet res = st.executeQuery("SELECT * FROM user WHERE username ='" +

ad.getUsername() + "' AND password ='" + ad.getPassword() + "'");

 return res.next();}

 User Authentication: The isLogin method takes an Admin object as a parameter, which contains the

username and password provided by the user attempting to log in. The method then establishes a

database connection using ConnectionDB.OpenConnection() and creates a statement (st) to execute

the SQL query.

 SQL Query Execution: The code executes the SQL query select * from user where username

='"+ad.getUsername()+"' and password ='"+ad.getPassword()+"' to retrieve user data matching the

provided username and password. This query checks the "user" table in the database for a row where the

username and password match the given values.

 Result Evaluation: The ResultSet object (res) stores the results of the query execution. The code checks

res.next() to determine if any rows were returned. If the result set has at least one row, it indicates that a

user with the provided username and password exists in the database, and the login is considered

successful.

 Security Implications: The login process, requiring a valid username and password combination, adds a

layer of security to the system. It ensures that only users with valid credentials can access the system's

protected resources. By verifying the provided username and password against the stored values in the

"user" table, the code prevents unauthorized users from gaining access to sensitive information or

performing restricted actions.

Secondly, the implementation of data encryption for sensitive information, such as user passwords, further

enhances security within the RTS system. While the database itself may not be encrypted, user passwords

are securely stored using strong encryption algorithms. This ensures that even in the event of a data breach,

unauthorized individuals cannot access and decipher the stored passwords. By encrypting passwords, the

system adds an extra layer of protection, reducing the risk of compromising user accounts and enhancing

overall security.

Moreover, the system employs prepared statements in the Java application to prevent SQL injection attacks.

Prepared statements ensure that user input is treated as data and not executable code, mitigating the risk of

malicious SQL injections. This practice significantly enhances the security of the system and protects

against one of the most common attack vectors in web applications.

Example from the ProdcutContorl class

PreparedStatement statement = ConnectionDB.OpenConnection().prepareStatement("INSERT INTO

product (name, category, price, status) VALUES (?, ?, ?, ?)");

 Prepared Statement: The use of a prepared statement helps protect against SQL injection attacks. By

using placeholders (?) for the values and binding them later with specific data, the statement ensures

that user input is treated as data rather than executable code. This prevents malicious users from

manipulating the SQL query and helps maintain the integrity and security of the database.

Lastly, the integration of Gmail for email functionality adds an additional layer of security. By activating

two-step authentication for the Gmail account used by the system, an extra level of verification is required to

send emails. This helps prevent unauthorized use of the email feature, ensuring that only authorized users

can send emails through the system. Furthermore, the use of two-step authentication reinforces the security

of the Gmail account, reducing the risk of email-related vulnerabilities.

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26083

By implementing these security measures, the RTS system establishes a secure environment for managing

rental tools, customer information, contracts, and user accounts. These measures work in conjunction to

safeguard data, protect against unauthorized access, and mitigate common security risks, ensuring the

integrity and confidentiality of the system.

TESTING STAGE

In this section, we will discuss the testing stage of the project. The main objective of the testing stage is to

ensure that the implemented functionality meets the specified requirements and performs as expected. This

stage involves various types of testing to validate the system's behavior and identify any issues or bugs that

need to be addressed.

Unit Testing:

Unit testing is performed to verify the individual components or units of the system in isolation. In our

project, we conducted unit testing on the isLogin method of the Admin class. The purpose of this test was to

ensure that the login functionality works correctly.

Example unit test for the isLogin method:

@Test

public void testIsLogin() throws SQLException {

 // Prepare test data

 Admin admin = new Admin("testUser", "testPassword");

 // Call the method under test

 boolean result = isLogin(admin);

 // Assert the expected result

 assertTrue(result); }

This example creates a test case that verifies the isLogin method's behavior with a sample username and

password. The test asserts the result should be true if the login is successful.

Integration Testing:

Integration testing focuses on testing the interactions between different components or modules of the

system. In our project, we performed integration testing to validate the connection between the isLogin

method and the ConnectionDB class.

An example is the integration test for the isLogin method, we tested the integration between the isLogin

method and the ConnectionDB class, ensuring that the login functionality works correctly in conjunction

with the database connection.

System Testing:

System testing evaluates the complete system's behavior and functionality as a whole. It aims to validate that

all the integrated components work together seamlessly. In our project, we conducted system testing to

ensure that the login functionality, including the user interface and database interaction, functions correctly.

Example system test scenario for the login feature:

1. Launch the application and navigate to the login page.

2. Enter valid credentials (username:"testUser", password:"testPassword") in the login form.

3. Click the login button and verify that the system successfully logs in the user.

4. Repeat step 2 with invalid credentials and ensure that the system displays an appropriate error message.

During system testing, we executed various test scenarios and verified that the system behaves as expected

in each case. Qualitative and quantitative analysis can also be done here to evaluate end user acceptance

testing (Kedwan F. H., 2017).

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26084

Conclusions And Recommendations

Conclusion

In the current project, a TRS desktop software design is built, which is a tool rental store system for renting

products. The benefits of this system are to manage the renting process. The waterfall methodology is used.

Hence, the project building started with the planning, requirements gathering, analyzing, design,

implementation, and testing.

For the existing systems, software programs have been reviewed (Headmaster, Sharefox) as similar rental

products systems. Their characteristics, and the limitations of each system have been compared with the

current proposed system. Only relevant and useful functionalities from the services provided by the previous

two systems have been adopted in the proposed system to serve the interests of the proposed system

functionality, especially the basics functionalities of any rental systems. This is in addition to the presence of

some of the features of the proposed system that distinguish it from the previous systems. However, there

are some limitations and restrictions in the current system due to the requirements imposed by the

stakeholders and the nature of business domain of the RTS system.

It is recommended that the proposed system be further improved by developing and implementing a full

web-based solution with online payment options to make it easier and faster for users and customers to

access.

Future Work (Recommendations)

Website Application

Websites are common these days. The objective of designing a website that is to bring in dynamism and

interaction between the website and its users. The data presented to the website users have to be updated

frequently without manual interventions. The data is displayed from the database automatically. Such

automated process is less prone to errors (Akpji, 2015). Making a web application is one of our future plans

to enhance the accessibility and the global orientation so the customers can request services from anywhere

in the world (Thakur, 2021).

Online Ordering

Online ordering feature saves time and effort for the customer and gives him an opportunity to browse

through the website for all the tools they need and then reserve them in the shopping cart as an order that

needs confirmation (payment) in order to become a confirmed order. Ordering via the Internet enhances the

concept of ease of purchase and increases the number of customers because of the ease of access and creates

a kind of loyalty to the organization and perhaps lower prices than traditional purchasing methods.

 Online Payment

Online payment has become almost mandatory with every website these days in the field of e-commercial

stores of all kinds. This is because it facilitates and speeds up the payment process, which leads to

smoothness in all the purchase processes and the subsequent operations. Also, there are some security

problems in traditional payment systems that help the payments system to bring out a huge revolution

(Momin Mukherjee , Sahadev Roy, 2017).

Difficulties

Throughout the development journey, several challenges were encountered in various aspects of the project.

When working with JavaFX, there were difficulties in dynamically updating UI components based on user

interactions. For example, synchronizing data displayed in different views and handling complex layouts

required careful consideration and thorough testing. In the realm of database connectivity, we struggled with

optimizing SQL queries to retrieve data efficiently, especially when dealing with large datasets.

Additionally, managing database transactions and handling exceptions related to database operations posed

challenges that demanded meticulous error handling and debugging.

Integrating Scene Builder into the development workflow brought its own set of obstacles. Ensuring proper

alignment between the UI components in Scene Builder and the associated code became a meticulous task,

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26085

especially when complex event handling and data bindings were involved. Troubleshooting compatibility

issues between different versions of Scene Builder and JavaFX libraries added to the complexity.

The Java language itself presented challenges, particularly in managing object-oriented concepts effectively.

This involved designing robust class hierarchies, implementing inheritance and polymorphism, and

resolving issues related to memory management and resource optimization. Debugging intricate code

structures, identifying, and resolving performance bottlenecks, and maintaining code readability were

constant considerations throughout the development process.

Furthermore, configuring and managing the XAMPP server required a deep understanding of server

architecture and network configurations. There were difficulties in setting up the server environment,

ensuring compatibility with the MySQL database, and addressing server-related errors that impacted the

system's functionality.

References

1. Verdon, J. (2019, 11 30). The Rental Economy Takes Flight. Retrieved from www.uschamber.com.

2. Headmaster. (2010, 1 26). Headmaster for accounts and stores. Retrieved from

http://www.headmasteraccounts.com/.

3. Sharefox. (2021, 2 5). Fully-customizable online rental store. Retrieved from https://sharefox.com.

4. Molino, T. (2021, 8 24). Top 10 Most Spoken Languages in The Business World. Retrieved from

www.gmsmobility.com.

5. Samanta, S. (2021, 6 21). Why is an Ecommerce Website Important? Retrieved from

www.opengrowth.com.

6. Gundaniya, N. (2021, 1 8). 7 Benefits of Electronic Payments. Retrieved from customerthink.com.

7. Akpji, K. (2015). A Web-Based Rental System (A Case-Study of Unibet Transport Services). Benin :

ACADEMIA.

8. Thakur, A. (2021). Car Rental System. International Journal for Research in Applied Science &

Engineering Technology (IJRASET), 412.

9. Momin Mukherjee , Sahadev Roy. (2017). E-Commerce and Online Payment in the Modern Era.

International Journal of Advanced Research in, 5.

10. Usability.gov. (2015, 4 5). Use Cases. Retrieved from www.usability.gov:

https://www.usability.gov/how-to-and-tools/methods/use-cases.html

11. lucidchart. (n.d.). What is a use case diagram? Retrieved from www.lucidchart.com:

https://www.lucidchart.com/pages/uml-use-case-diagram

12. simmytarika5. (2022, 5 2). Unified Modeling Language (UML) | Activity Diagrams. Retrieved from

www.geeksforgeeks.org: https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-

diagrams/

13. Martin, M. (2022, 2 19). N Tier(Multi-Tier), 3-Tier, 2-Tier Architecture with EXAMPLE. Retrieved

from guru99: https://www.guru99.com/n-tier-architecture-system-concepts-tips.html

14. IBM_Cloud_Education. (2022, 10 28). Three-Tier Architecture. Retrieved from www.ibm.com:

https://www.ibm.com/cloud/learn/three-tier-architecture

15. Daeldung. (2021, 11 11). Layered Architecture. Retrieved from www.baeldung.com:

https://www.baeldung.com/cs/layered-architecture

16. Len Bass, Paul Clements, Rick Kazman. (2012). Software Architecture in Practice. Westford:

Addison-Wesley.

17. Bell, D. (2004, 12 15). UML basics: The component diagram. IBM Corporation.

18. Refactoring.Guru. (n.d.). What's a design pattern? Retrieved from Refactoring.Guru.:

https://refactoring.guru/design-patterns/what-is-pattern

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26086

19. Nishadha. (2022, 11 4). UML Class Diagram Relationships Explained with Examples. Retrieved

from creately: https://creately.com/blog/diagrams/class-diagram-relationships/

20. SOLUTIONS, R. R. (2023, 2 15). A RentMaster. Retrieved from rentmaster.net:

https://www.rentmaster.net/products/rentmaster-er-version

21. EZRentOut. (2021, 3 21). A EZRentOut. Retrieved from EZRentOut.net: https://www.g2.com/

22. SOLUTIONS, R. R. (2023, 2 15). A RentMaster. Retrieved from rentmaster.net:

https://www.rentmaster.net/products/rentmaster-er-version

23. Kedwan, F. H. (2017). Patients Online Registration System: Feasibility and Perceptions. Medina:

Annals of Medical and Health Sciences Research.

24. Kedwan, F. H. (2019). Model-Driven Software Development Platforms Reviews (Vols. ISBN: 973-

93-80900-26-6). International Journal of Computer Applications.

25. Kedwan, F. (2024). A Software Engineering Approach on Developing a Real Time Radar Target

Generator for Airborne Targets (Vol. 3(2)). Medina, Saudi Arabia: Applied Science and Engineering

Journal for Advanced Research.

Appendix

Appendix 1

Table 1: Compasion between Headmaster and Sharefox against TRS system

Features Headmaster Sharefox TRS

Add, modify, delete

Customers

Add, modify, delete

Users

Add, modify, delete

Products

Create Reports

Create Lease

Contracts

Product Search

Tool

Friendly & Modern

GUI

Suppliers

Management

Our program does not support this feature because it

does not require the entry of purchases through

companies and it not one of the requirements.

Rental invoice in

Arabic

Because it is not part of the requirements and English is

the most prominent language in business (Molino,

2021).

Rental invoice in

English

Desktop

Application

Web Application Future plan

 We strive for our system to support the web to be more

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26087

Appendix 2

usable, accessible, and increase customer reach

(Samanta, 2021).

Social Media and

Multimedia

Integrations

 It is not among the requirements, and most clients in

the field of this work are not social media users.

Online Payment

Tool

 Future plan

 This step helps speed up and organize the rental

process and is necessary when the web is available and

it provide higher security form the traditional payment

(Gundaniya, 2021).

Keep Track of

Contracts and

Leased Products

 This feature is specific to our system, as it

tracks and monitors lease expiration dates in an

organized manner.

Send Reminders to

The Customer and

The Manager

This is another unique feature of our system

based on sending reminders to both the

customer and the manager.

Features Rent Master
EZRentou

t
TRS

Add, modify, delete

Customers

Add, modify, delete

Users

Add, modify, delete

Products

Create Reports

Create Lease

Contracts

Product Search

Tool

Friendly & Modern

GUI

Suppliers

Management

Our program does not support this feature because it does

not require the entry of purchases through companies and

it not one of the requirements.

Rental invoice in

Arabic

Because it is not part of the requirements and English is

the most prominent language in business (Molino, 2021).

Rental invoice in

English

Desktop

Application

Web Application Future plan

 We strive for our system to support the web to be more

usable, accessible, and increase customer reach

(Samanta, 2021).

Social Media and

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26088

Multimedia

Integrations

 It is not among the requirements, and most clients in the

field of this work are not social media users.

Online Payment

Tool

 Future plan

 This step helps speed up and organize the rental process

and is necessary when the web is available and it provide

higher security form the traditional payment (Gundaniya,

2021).

Keep Track of

Contracts and

Leased Products

 This feature is specific to our system, as it tracks

and monitors lease expiration dates in an

organized manner.

Send Reminders to

The Customer and

The Manager

 This is another unique feature of our system

based on sending reminders to both the customer

and the manager.

Table 2: Compasion between Rent Master and EZRentout against TRS system

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26089

Appendix 3

Appendix 4

Figure 1: Use case diagram demonstration of the actors and system relationship

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26090

Table 8: Use case discription for Manage Product use case

Appendix 5

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26091

Table 9: Use case discription for Manage User use case

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26092

Appendix 6

Table 10: Use case discription for Search for a Product use case

Appendix 7

Table 11: Use case discription for Generate Profit Report use cas

Appendix 8

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26093

Table12: Use case discription for Generate Rental Contract use case

Appendix 9

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26094

Table13: Use case discription for Track Contract use case

Appendix 10

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26095

Table14: Use case discription for Manage Customer use case

Appendix 11

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26096

Appendix 12

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26097

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26098

Appendix 13

Appendix 14

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26099

Appendix 15

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26100

Appendix 16

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26101

Appendix 17

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26102

Appendix 18

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26103

Appendix 19

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26104

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26105

Appendix 20

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26106

Appendix 21

Appendix 22

Table 16: User table Schema

Appendix 23

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26107

Table 17: Product table Schema

Appendix 24

Table 18: Customer table Schema

Appendix 25

Table 19: Contract table Schema

Appendix 26

Table 20: contract product table Schema

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26108

Appendix 27

Figure 17:Login page of the RTS system.

Appendix 28

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26109

Figure 18: RTS system Home page

Appendix 29

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26110

Figure 19: RTS system Product Management Window

Appendix 30

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26111

Figure 20: RTS system Customer Management Window

Appendix 31

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26112

Figure 21: RTS system User Management Window

Appendix 32

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26113

Figure 22: RTS system Report Window

Appendix 33\

Khaled Ainieh, IJECS Volume 13 Issue 04 April, 2024 Page 26114

Figure 23: RTS system Contract Management Window

