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Abstract:  

The modern Science of Social Networks has brought significant advances to our understanding of the 

Structure, dynamics and evolution of the Network. One of the important features of graphs representing the 

Social Networks is community structure. The communities can be considered as fairly independent 

components of the social graph that helps identify groups of users with similar interests, locations, friends, or 

occupations. The community structure is closely tied to triangles and their count forms the basis of 

community detection algorithms. The present work takes into consideration, a triangle instead of the edge as 

the basic indicator of a strong relation in the social graph. A simple triangle counting algorithm is then used to 

evaluate different metrics that are employed to detect strong communities. The methodology is applied to 

Zachary Social network and discussed. The results bring out the usefulness of counting triangles in a network 

to detect strong communities in a Social Network. 
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1. Introduction 

In recent years, there is a growing interest in 

understanding the structure, dynamics and 

evolution of complex Networks such as World 

Wide Web (www), Biological Networks, 

Technological Networks, Social Networks etc., [1]. 

A network is basically a set of items called the 

vertices or nodes with connections between them 

called edges. As graphs are a ubiquitous data 

representation that can be used to model complex 

relations in a wide variety of applications ranging 

from Social Sciences to Information Systems [2], 

graph theory can be used to study the complex 

networks modeled as graphs. The social network 

provides a record of global human interactions at a 

scale that is hitherto unprecedented and these are an 

invaluable resource for analyzing social 

allegiances, discovering entities with shared 

interests and identifying the key players in the 

social media [3]. It is observed that the size of 

social networks such as Facebook, Twitter, 

Instagram etc. with hundreds of millions of users 

and billions of social connections are growing day 

by day and an analysis of such networks is highly 

difficult. However, Graph theory provides 

techniques for fruitful analysis of these networks. 

Social network analysis can be used to identify 

important social actors, highly or sparsely 

connected communities and interactions among the 

various entities in the underlying network [4]. The 

Social networks differ from most other types of 

networks in two important ways namely network 

transitivity and assortative mixing or positive 

correlations [5]. Social networks are often seen as 

emerging from various social processes or 

mechanisms and the pattern of network ties in them 

tend to reveal the processes that have given rise to 

them [6]. Furthermore, in a social network, the 

distribution of edges is not only globally, but also 

locally inhomogeneous  

With high concentration of edges within special 

groups of vertices and low concentration between 

these groups leading to the concept of community 

structure [7]. The community structure plays a 

significant role in the analysis of social networks 

and intense studies on this, is bound to reveal 

important patterns in the network aiding the 

analysis of the dynamics and structure of the 

system. The community structure is closely related 
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to triangles and the degree behavior of the triangles 

is an integral part of the structure [8]. The present 

work is basically aimed at utilizing the concept of 

triangle counting together with the associated 

metrics in finding strong communities in a social 

network. 

A triangle is basically a transitive relation between 

three vertices and is an important building block 

and distinguishable feature of a network [9]. 

Further, a triangle is the shortest non-trivial cycle 

(i.e. a cycle of length 3) and the smallest non-trivial 

clique (i.e. a clique of size 3) that is at the heart of 

the definition of many important measures of 

network analysis  such as the clustering coefficient, 

transitivity, triangular connectivity etc. [10].The 

concept of triangles have been used successfully in 

the detection of spamming activity, uncovering the 

hidden thematic structure of the web and link 

recommendation in online social networks [11]. A 

large presence of triangles in social networks is a 

consequence of the homophily principle which 

suggests that similar entities in a network tend to 

establish connections, such as people with similar 

interests, members of the same family or work 

mates [12].  

There exist two categories of triangle-counting 

algorithms, the exact and the approximate. A brief 

review of the exact and approximate triangle 

counting algorithms is presented in [13]. In the 

exact counting method, triangle counting can be 

achieved by using the concept of eigen values or 

trace of the adjacency matrix of a graph. For 

triangle counting using trace, matrix multiplication 

is need to find the cube of the adjacency matrix. It 

is to be noted that both the matrix multiplication 

process and the eigen value computation process 

are time consuming when the matrix is large as in a 

social network. Parallelization and new matrix 

approaches have been developed to overcome some 

of the deficiencies in these methods. The present 

work utilizes both approaches for finding the 

number of triangles in a network and then using the 

associated metrics to find the strong communities 

in the social network. 

2. Basic Concepts 

Let us assume that a social network can be captured 

by an undirected sample graph  where  is 

the nonempty set of vertices or nodes and is a set 

of edges or connections. The vertices or edges may 

have a variety of properties associated with them in 

a social Network. For example, the vertices may 

represent men or women of different nationalities, 

religion, location, ages etc., while edges may 

represent friendship, animosity, professional 

acquaintance or location proximity etc. It is to be 

noted that if a vertex  is connected to vertex  and 

vertex  to vertex  then there is a high chance that 

vertex  is connected to vertex . In terms of social 

networks, it translates to friend of your friend is 

likely to be your friend [14]. This is basically the 

property of network transitivity or clustering that 

leads to the presence of heightened number of 

triangles in the network. We present the definitions, 

metrics along with the corresponding results that 

have been put into use in the present work. 

2.1 Adjacency Matrix 

For a graph  with vertex 

set , the adjacency matrix of  is the 

 matrix   where 

  i.e.,  is 1 if there is an 

edge from . Some results on adjacency matrix 

that will be of use in the present work is outlined 

here for completeness. 

1. For an undirected Graph , the adjacency 

matrix is symmetric. 

2. The  entry of  is the number of  

distinct walks of length  in . 

3.  Cycles of length  are diagonal elements in 

 and a cycle of length 3, the global count of 

triangles      in the graph  is given by 

 , where Tr refers to the trace 

operator of a matrix. 

4. The sum of the eigen values of a square 

matrix is equal to its trace. 

5. If  is an eigen value of  then   is an 

eigen value of . 

6. The total number of triangles (G) in G is 

also given by  

Where  are eigen values of  

2.2 Degree of a Vertex 

The Degree of a vertex is the number of edges 

incident with that vertex. It is a measure of the 

connectedness of a person (node) with other 
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persons (nodes) in the network. A vertex with 

maximum degree can highlight the influence of the 

community around that node. The degree of vertex 

V is denoted by  

2.3 Clustering Coefficient & Transitivity of a 

Graph 

In the seminal paper [15], the authors propose a 

model that explains several properties of social 

networks such as the abundance of triangles and the 

shortest paths among     

any pair of nodes. They also introduced such as 

clustering coefficient which is a measure of the 

frequency of triangles. The clustering coefficient 

of a vertex   

 with degree  defined by 

   

The global clustering coefficient also known as the 

transitivity denoted by  is defined as 

   =  

It is to be noted that a wedge is a path of length 2 

and large clustering coefficients are considered a 

manifestation of the community structure. The local 

clustering coefficient  has been used quite 

widely in the sociological literature wherein it is 

referred to as the network density [14] 

3. Methodology 

In this section, we present two algorithms for 

triangle counting; one is based on computing the 

trace of the cube of the adjacency matrix while the 

other is based on finding the sum of the cubes of 

the eigenvalues of the adjacency method. 

3.1 Algorithm 1-  Trace Algorithm 

Step1: Read the adjacency matrix of the 

graph G consisting of  vertices. 

Step2: Calculate  by matrix multiplication. 

Step3: Find the trace of    i.e., Tr ( ). 

Step4: Calculate . 

Observations: 

1. If the adjacency matrix consists of  

non-zeroes then the number of operations for 

computing  is . 

If using Hadamard product and sparse matrix-

vector products [16], then number of operations is 

 which is approximately half the 

number of operations observed made in observation 

1.  

3.2 Algorithm 2-  Eigen value Algorithm 

Step 1: Read Adjacency matrix  of Graph 

. 

Step 2: Find the eigen values   of . 

Step 3: Calculate   . 

Step4: Compute  

Observations: 

1. The eigen values can be computed using the 

LancZos method and is based on matrix-vector 

products that is easy to parallelize [17]. 

2. The QR algorithm can be employed to find 

the eigen values of  and is available as a direct 

command in Matlab. 

4. Numerical Experiment 

The calculations were carried out on a computer 

with Intel Core2 Duo E 4500 processor @2.20Ghz 

and 4GB of RAM. The total number of triangles in 

a random G were calculated using both the Trace 

Algorithm that employs matrix multiplication and 

the Eigen value Algorithm that calculates the eigen 

values of the adjacency matrix of the Graph . A 

random symmetric matrix having a specified 

number of vertices/rows (columns) with 0,1, entries 

and 0 on the diagonal is generated with a 

probability parameter controlling the density 

(number) of edges. The two algorithms were run 

for the randomly generated adjacency matrix of the 

social graph having vertices 500, 750, 1000, 250, 

1500, 1750 and 2000 and having 70% of the edges 

of a corresponding complete graph. The system 

time for running both the algorithms were 

calculated and compared in Fig 1.  
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Fig. 1: System time elapsed for running 

Algorithms 

From the presented Figure, it is noticed that the 

Eigenvalue method is faster than the matrix 

multiplication method in calculating the total 

number of triangles in the graph. Using Hadamard 

products for matrix multiplication and Arnoldi - 

Lanczos method for Eigen value calculations 

significantly lowers the running time for both the 

algorithms. 

5. Case Study 

As a case study we consider the well-known and 

much used Zachary Karate club network, The data 

was collected from members of a university Karate 

club by Wagne Zachary in 1977 [18]. Each node in 

the corresponding social graph represents a 

member of the club and each edge represents a tie 

between two members of the club. The graph of 

the network consists of 34 vertices and 78 edges. 

The matrix norm of the adjacent matrix is 6.7257 

and the condition number of the matrix is 

1.327e+18. The matrix has a rank of 24 and null 

space dimension of 10. A plot of the graph is given 

in Fig. 2. The local clustering coefficient is 

dependent on the number of triangles incident to a 

vertex. The local friendship structure or 

connectivity of each entity can be obtained by 

counting how many triangles a vertex is part of. 

The corresponding connectivity of the network is 

shown in Fig. 3. The maximum number of 

triangles a vertex is part is 18. 

The average clustering coefficient of the graph is 

0.5879 which is an average of the local clustering 

coefficients. This metric places more weights on 

the low degree nodes. Around 11 vertices of the 

graph have a local clustering coefficient 1 which 

quantifies how close its neighbors are to being a 

clique. The network has a triangle count of 45 

which is validated from the two algorithms and has 

a wedge count of 528. Pons and Latapy [19] 

developed an algorithm to find communities in a 

graph via random walks basing on the idea that 

short random walks tend to stay in the same 

community. On using its implementation from 

igraph R package, we find that the network is 

divided into 5 groups based on the random walks 

and a pictorial representation is given in Fig. 4. 

The basic interest lies in finding groups of vertices 

within which connections are dense, but between 

which connections are sparser. A number of 

algorithms that appear to work with real-network 

data is finding the community structure is outlined 

in [20].  

 

Fig. 2: Graph of Zachary Network 
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Fig. 3: Triangle count at each vertex of Zachary 

network 

 

Fig. 4: Community structure using Random 

Walks 

On experimentation it is observed that most of the 

methods appear to be ideal in detecting community 

structure but the metrics such as the transitivity 

(local and global) as well as the average clustering 

coefficient appear to give an approximate idea to 

these algorithms in detecting the community 

structure. 

6. Conclusion 

The calculation of the modularity and detection of 

the community structure of a social network 

depicted by its adjacency matrix is studied through 

the metrics associated with triangle counting. The 

clustering coefficient defines the quality of the 

communities and is an important metric. Methods 

at reducing the computational time of the 

algorithms for triangle counting are necessary for 

large social networks. 
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