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Abstract:   

In this paper, a computer aided detection of cancer nodules in Computed Tomography (CT) images of lungs 

using radon transform, ridgelet transform and Curvelet transform is proposed. The lung lobes are segmented 

from the CT images using morphological operations. The transforms are applied to the segmented lung lobes. 

From the transformed image, the presence of nodules in the lung lobes can be detected and located. The 

proposed detection method gives an accuracy of 98.5% with a sensitivity of 97.39% and specificity of 100%.  

 Introduction: 

Many image processing tasks take advantage of 

sparse representations of image data where most 

information is packed into a small number of 

samples. Typically, these representations are 

achieved via invertible and non-redundant 

transforms. Currently, the most popular choices for 

this purpose are the wavelet transform and the 

discrete cosine transform. The success of wavelets is 

mainly due to the good performance for piecewise 

smooth functions in one dimension. Unfortunately, 

such is not the case in two dimensions. In essence, 

wavelets are good at catching zero-dimensional or 

point singularities, but two-dimensional piecewise 

smooth signals resembling images have one-

dimensional singularities. That is, smooth regions 

are separated by edges, and while edges are 

discontinuous across, they are typically smooth 

curves (Thomas Arod, 2005). Intuitively, wavelets 

in two dimensions are obtained by a tensor-product 

of one dimensional wavelets and they are thus good 

at isolating the discontinuity across an edge, but will 

not see the smoothness along the edge. To overcome 

the weakness of wavelets in higher dimensions, 

three transforms are used in the chapter namely 

Radon transform, Ridgelet transform and Curvelet 

transform. The Radon transform detects the presence 

of nodule in the image, Ridgelet transform locates 

the position of the nodule and Curvelet transform 

segments the nodule from the image. By performing 

all these transforms, a cancer nodule location and 

shape can be automatically assessed without the 

help of a physician. 

For detection of cancer, few methods have been 

reported in the literature. Bin Chen et al (2012) 

developed a segmentation method based on local 

intensity structure analysis and surface propagation 

in CT images. The average nodule detection rate is 

95%. Niccolo Camarlinghi et al (2012) combined 

different computer aided detection methods to 

increase the actual support for radiologists in the 

identification of pulmonary nodules in CT scans. 

Binsheng Zhao et al (2003) proposed a three step 

approach for identification of nodules in multislice 

CT images. The three steps are separation of the 

lungs from the other anatomic structures, detection 

of nodule candidates in the extracted lungs and 

reduction of false-positives among the detected 

nodule candidates. The method achieved a 
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sensitivity of 84.2%. Matthew S. Brown et al (2001) 

proposed a patient specific model for automatic 

detection of pulmonary nodules with a sensitivity of 

80%. Stefano Diciotti et al (2008) proposed a 

segmentation method based on 3D region growing 

by cropping the volume of interest enclosing the 

nodule. The sensitivity obtained is 86.5%. Jamshid 

Dehmeshki et. al (2008) proposed a 3D region 

growing with fuzzy connectivity to segment the 

nodules from CT images with a sensitivity of 84%. 

Xujiong Ye et al (2009) developed a shape based 

computer aided detection of lung nodules from CT 

images. The average detection rate obtained is 

90.4%.  

Radon Transform: 

Radon transform is the process of projecting an 

image at different views (Tomasz Arod et al 2005). 

Radon transform is the projection of the intensity of 

an image along a radial line which is oriented at an 

angle. The value of a 2-D function at an arbitrary 

point is uniquely obtained by the integrals along the 

lines of all directions passing the point.   

 

In mathematics, radon transform in two dimensions 

is the integral transform consisting of the integral of 

a function over straight lines. At each view, the gray 

scale matrix of each image becomes a vector. Each 

component in this vector corresponds to the line 

integral through the image. The number of projected 

vectors in each image is equal to the number of 

projected angles.  The vector length is equal to 2*N-

1 elements, where N is the maximum number of 

image pixels. The continuous Radon transform of an 

image f (x,y) is given by 

( , ) ( , ) ( cos sin )R s f x y x y s dxdy   
 

 

        - (6.1)               

,0s         

Where (.) is the Dirac delta function and s = 

x.cos(θ) + y.sin(θ) defines the perpendicular distance 

of all lines in the image plane which form an angle 

θ∈[0,π] with respect to the x-axis.  Radon transform 

of f (x,y) is the one dimensional projection of f (x,y) 

at an angle θ (Salim Lahmiri et al 2011).  

 

In the rotated coordinate system (s,u), Radon 

transform can be expressed as 

 

( , ) ( cos sin , sin cos )

,0

R s u f s u s u du

s

   

 





  

     

              

 (6.2) 

Where 

cos sins x y                                                            

(6.3) 

sin cosu x y                                                       

(6.4) 

 

Radon transform represents the summation of f (x, 

y) along a ray at a distance s and at an angle θ. It 

maps the spatial domain (x, y) to the domain (s, u). 

 

The Radon transform of an image is the sum of the 

Radon transforms of each individual pixel. The 

transform first divides pixels in the image into four 

subpixels and projects each subpixel separately. 

Each subpixel's contribution is proportionally split 

into the two nearest bins, according to the distance 

between the projected location and the bin centers. If 

the subpixel projection hits the center point of a bin, 

the bin on the axes gets the full value of the 

subpixel, or one-fourth the value of the pixel. If the 

subpixel projection hits the border between two 

bins, the subpixel value is split evenly between the 

bins. 

Ridgelet Transform: 

In ridgelet transform, the line singularity is 

mapped into point singularity using the Radon 

transform (Minh N. Do et al 2003). The wavelet 

transform is used to effectively handle the point 

singularity in the Radon domain. The ridgelet 

transform was introduced as a sparse expansion for 

functions on continuous spaces that are smooth 
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away from discontinuities along lines. Ridgelet 

transform has good directional selectivity and is able 

to locally and sparsely represent the signal when 

compared to the traditional transforms such as 

wavelet transform. As a new multiscale 

representation for functions on continuous spaces, it 

is smooth away from discontinuities along lines.  

The ridgelet transform of an arbitrary 

bivariate function f(x1,x2) in two dimensions is 

represented as 

1

1 22
, ,

cos sin
( ) ( )a b

x x b
x a f

a


 


  
         --- (6.5)                                

Where a > 0 is a scale parameter, θ is the orientation 

parameter and b is the location scalar parameter. The 

ridgelets are constants along lines 
1 2cos sinx x   

and they are wavelets along the orthogonal 

direction. Using common θ and b and different 

scales for a, it is possible to efficiently approximate 

the singularities along a line. The ridgelet 

coefficients of an integrable bivariate function f(x) is 

defined as 

, ,( , , ) ( ) ( )f a bR a b x f x dx                         --- (6.6)                                          

The reconstruction is given by 

2

, , 3

0 0

( ) ( , , ) ( )
4

f a b

da d
f x R a b x db

a






 



 



        --- (6.7) 

  Wavelets are very effective in representing objects 

with isolated point singularities, while ridgelets are 

very effective in representing objects with 

singularities along lines (E. J. Candes, 1998). In 

fact, ridgelets is a way of concatenating 1-D 

wavelets along lines. In 2-D, points and lines are 

related via the Radon transform, thus the wavelet 

and ridgelet transforms are linked using the Radon 

transform. The ridgelet transform is the application 

of a 1-D wavelet transform to the slices (also 

referred to as projections) of the Radon transform 

(E. J. Candes et al 1999).  

The continuous ridgelet transform is expressed as 

,( , , ) ( ) ( , )f a b f
R

CRT a b t R t dt                 ---- (6.8) 

The relation between radon transform and ridgelet 

transform is shown in Figure 6.1 

               

 

Figure 6.1: Relation between radon transform 

and ridgelet transform: 

The basic strategy for calculating the continuous 

ridgelet transform is first to compute the Radon 

transform and second, to apply a one-dimensional 

wavelet transform to the slices.  

Curvelet Transform: 

Curvelet transform is a non-adaptive 

technique for multi scale object representation and 

an appropriate basis for representing images which 

are smooth apart from singularities along smooth 

curves, where the curves have bounded curvature 

(Shadi Al Zubi et al 2011). Curvelet transform is a 

new multi-scale representation most suitable for 

objects with curves. The continuous curvelet 

transform can be defined by a pair of windows W(r) 

(a radial window) and V(t) (an angular window), 

with variables Was a frequency-domain variable, 

and r and t as polar coordinates in the frequency-

domain. 

 

2 (2 ) 1j

j

W r




                   --- (6.9)         
3 3

( , )
4 2

r  
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The curvelet transform can be defined as a function 

of x =(x1, x2) at scale 2
−j

, orientation θl, and position 

xk
(j,l) 

by 
( , )

, , ( ) ( ( ))
l

j l

j l k j kx R x x                    ---- (6.11) 

Where Rθ is the rotation in radians. Implementation 

of curvelet transform involves the following steps: 

1) Subband Decomposition 

2) Smooth Partitioning 

3) Renormalization 

4) Ridgelet Analysis 

Subband decomposition: The object f is filtered 

into subbands. 

 

0 1 2( , , ..........)f P f f f                        --- (6.12) 

P0 is low pass filter and Δ1, Δ2 are band pass filters. 

The original image can be reconstructed from the 

subbands by 

0 0( ) ( )s s

s

f P P f f                            ----   (6.13) 

Smooth Partitioning: Each subband is smoothly 

windowed into “squares” of an appropriate scale 

(Jean-Luc Starck et al 2002). 

 

1 ,Q s sf W f Q Q                                    ---- (6.14) 

Where Q is a dyadic square. The notation Qs will 

correspond to all dyadic squares of scale s. Let WQ 

be a window centered near Q, obtained after dilation 

and translation of a single w, such that the 
2 ,Q sW Q Q  make up a partition of unity. 

Renormalization: Each resulting square is 

renormalized to unit scale. The multiscale ridgelet 

system renormalizes and transports the ridgelet basis 

method and makes it as a system of elements at all 

lengths and all finer widths (Jianwei Ma et al 2010). 
1( ) ( ),Q Q Q s sg T W f Q Q                      --- (6.15) 

Ridgelet Analysis: The orthonormal ridgelet 

transform is applied to each square.  

Experimental Results: 

The Radon transform indicates the presence 

of nodule in the image. An approximate location of 

the nodule can be obtained from the radon 

transform. The correct location is given by the 

Ridgelet transform output. The Ridgelet output is 

able to give an approximate shape of the nodule. 

The exact shape of the nodule is given by Curvelet 

transform. From the curvelet transformed image, the 

nodule can be segmented correctly. The nodules are 

classified as malignant or benign based on shape 

parameters and texture parameters. 

 

Figure 6.2 and Figure 6.3 show a CT image of 

lungs without cancer nodule and its segmented 

output respectively.   

 
Figure 6.2: CT image of lungs without cancer 

nodule 

 
Figure 6.3: Segmented output of Figure 6.2 

The radon transformation is applied to the 

segmented lung lobe.  The radon transform output of 

Figure 6.3 is shown in Figure 6.4. In the transform, 

there is no intensity distribution indicating that there 

is no specific change or abnormality as compared to 

normal lungs.  
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Figure 6.4: Radon transform of Figure 6.3 

 

Detection of Nodule: 

Figure 6.5 and Figure 6.6 show a CT image 

of lungs with well circumscribed nodule located in 

right lung lobe and its segmented output 

respectively. 

 
Figure 6.5: CT image with well circumscribed 

nodule in right lung lobe 

 
Figure 6.6: Segmented output of Figure 6.5 

The radon transform output of Figure 6.6 is shown in 

Figure 6.7. The presence of nodule in left lung or in 

right lung can be detected from transformed output.   

 
Figure 6.7: Radon transform of Figure 6.6 

  

The 2D transform shows that the curve is bending 

towards the right side. The curve bending shows that 

towards right side of the image, the intensity 

distribution is more. This indicates that the cancer 

nodule is located in the right lung lobe. The radon 

transform output indicates the presence of nodules 

in the CT images. To locate the position of nodules, 

radon transform plots are taken at angle 0
o
 and angle 

90
o
. At angle 0

o
 and angle 90

o
 the distance in the 

transformed output is equivalent to the pixel 

distance. The radon transform at 0  is 

represented as X detail and the radon transform at 

90  is represented as Y detail. When 0   , the 

equation 6.2 and 6.3 reduce to 
s x

u y




                                               --- (6.16) 

s x

u y

   
   

   
                                                   --- (6.17) 

  

The equation 6.16 shows that the distance in X 

detail is equal to the pixel distance in image. The x-

axis of the X detail plot shows the distance at which 

the nodule is located.  

When 90  , equation 6.2 and 6.3 reduce 

to 
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s y

u x



 
                                       --- (6.18) 

 

s y

u x

   
   

   
                                             --- (6.19) 

 

The distance in Y detail is also equal to the pixel 

distance of the image. The x-axis of the Y detail plot 

shows the distance at which the nodule is located. 

From Figure 6.7, it is indicated that the nodule is 

present in the right lung of Figure 6.6. To locate the 

position of the nodule in Figure 6.6, the right lung is 

segmented and radon transform is performed.   

Figure 6.8 and Figure 6.9 show the Y detail and X 

detail plots of Figure 6.6 respectively. 

 

 
Figure 6.8: Y detail plot of Figure 6.6 

 

In the Y detail plot, the distribution of the intensity 

is in the negative side. It indicates that the nodule is 

located below the center part of the lungs in y-axis. 

The nodule spread is from pixel distance 13 to 32 

below the origin in y-axis. In X detail plot, the 

distribution of intensity is on both side of origin. 

This indicates that the nodule is located in the center 

part of the lungs in x-axis. The nodule spread is 

from 0 to 15 pixel distances to the left side and 0 to 

5 pixel distances to the right side. Analyzing X 

detail and Y detail plots, it can be concluded that the 

nodule is located in the lower part of the right lungs 

and in the lower part; the nodule is located at the 

center.  

 
Figure 6.9: X detail plot of Figure 6.6 

 

The correct location of the nodule is given 

by the ridgelet transform output. The ridgelet output 

is able to give the shape of the nodule. The ridgelet 

transform output of Figure 6.6 is shown in Figure 

6.10 and Figure 6.11. The X level shows the ridgelet 

output when 0  for the radon transform output. 

The Y level shows the ridgelet output when 

90  for the radon transform output. 

 
Figure 6.10: Ridgelet output at θ = 0

o
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Figure 6.11: Ridgelet output at θ = 90

o
 

From Figure 6.10 and Figure 6.11 the location of the 

nodule is found as: 

In the Y axis below the origin from 8 to 20 pixel 

distance 

In the X axis on either side of origin: left side 8 

pixel distance and right side 5 pixel distance 

To find the exact shape of the nodule, the curvelet 

transform is performed. The curvelet transformed 

output of Figure 6.6 is shown in Figure 6.12. 

 

 
Figure 6.12: Curvelet output  

 

The nodule can be segmented from the Curvelet 

output by separating the connected components in 

the curves. The curve with more number of 

connected components is the lungs itself and it is 

removed to get the nodule as final output.  The final 

segmented nodule is shown in Figure 6.13. 

 

 
Figure 6.13: Segmented nodule  

Radon transform indicates that nodule is 

present in the right lung, Ridgelet transform finds 

the exact location of the nodule and Curvelet 

transform segments the nodule from the image. 

Conclusion: 

In this paper, a computer aided detection and 

classification of nodule in CT images of lungs is 

proposed. In the first phase of the proposed 

technique, the lung region is extracted from the 

image using morphological operations. Then 2D 

radon transform is applied to detect whether the 

nodule is present in left lung or in right lung. An 

approximate location of the nodule is detected by 

the radon transform at angle 0
o
 and angle 90

o
. The 

correct location of the nodule is given by the ridgelet 

transform output. The ridgelet output is able to give 

an approximate shape of the nodule. The nodule can 

be segmented from the curvelet transform output. 

The proposed detection method gives an accuracy of 

98.5% with a sensitivity of 97.39% and specificity 

of 100%. The images in which small nodules 

located at the pleural side near the sternum are not 

detected correctly. In these cases the proposed 

detection method is not able to differentiate between 

the nodule and the sternum present in the image. 
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