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Abstract:  

Single image haze removal has been a challenging problem due to its ill-posed nature. In this paper, we have 

used a simple but powerful color attenuation prior for haze removal from a single input hazy image. By 

creating a linear model for modeling the scene depth of the hazy image under this novel prior and learning 

the parameters of the model with a supervised learning method, the depth information can be well recovered. 

With the depth map of the hazy image, we can easily estimate the transmission and restore the scene 

radiance via the atmospheric scattering model, and thus effectively remove the haze from a single image. 

Experimental results show that the proposed approach outperforms state-of-the-art haze removal algorithms 

in terms of both efficiency and the dehazing effect. 
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1. Introduction 

Outdoor images taken in bad weather conditions 

(e.g., foggy or hazy) generally lose contrast and 

fidelity, resulting from the fact that light is absorbed 

and scattered by the cloudy medium such as particles 

and water droplets in the atmosphere through the 

process of propagation. Reinstatement of images 

taken in these specific situations has caught 

increasing attention in the last years. This job is 

important in a number of outdoor applications such 

as remote sensing, intelligent vehicles, object 

recognition and surveillance. In remote sensing 

systems, the recorded bands of reflected light are 

processed [1], [2] in order to restore the outputs. 

Multi-image techniques [3] solve the image de 

hazing difficulty by processing several input images 

that have been taken in different atmospheric 

situation. A more difficult problem is when only a 

single degraded image is available. Solutions for 

such cases have been introduced only in recent times 

[6]–[10].  

In this paper we introduce an alternative single-

image based approach that is able to accurately 

dehaze images using only the original degraded 

information. An extended conceptual of the core 

idea has been recently introduced by the authors in 

[11]. Moreover, most automatic systems, which 

strongly depend on the meaning of the input images, 

fail to work usually caused by the degraded images. 

Therefore, improved techniques of image haze 

removal will benefit many image understanding  and 

computer vision applications such as aerial imagery 

[1], image classification [2]–[5],image/video 

retrieval [6]–[8], remote sensing [9]–[11] and video 

analysis and recognition  [12]–[14].Since 

concentration of the haze is different from place to 

place and it is difficult to detect in a hazy image, 

image dehazing is thus a challenging task. Although 

Tan’s approach is able to attain notable results, it 

tends to produce over-saturated images. Fattal [15] 

proposes to remove the haze from color images 

based on Independent Component Analysis (ICA), 

but the approach is time-consuming and cannot be 

used for grayscale image dehazing. First, this 

approach performs an effective per-pixel calculation, 

different from the majority of the earlier methods 

[6]–[8] that process patches. An appropriate per-

pixel strategy reduces the amount of artifacts, since 

patch based methods have some limitations due to 

the assumption of constant air light in every patch. 

In broad, the assumptions made by patch-based 

techniques do not hold, and therefore additional post 

processing steps are necessary (e.g. the method of 

He et al. [8] needs to smooth the transmission map 

by alpha-matting). Secondly, since do not estimate 

the depth (transmission) map, the difficulty of this 

approach is lower than most of the earlier strategies. 

Finally, this technique performs faster which makes 

it appropriate for real-time applications.  

http://www.ijecs.in/
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In this paper, we propose a novel color attenuation 

prior to single image dehazing. This simple and 

powerful prior can help to create a linear model for 

the scene depth of the hazy image. The linear model 

is used to learning the parameters with a supervised 

learning method, the bridge between the hazy image 

and its corresponding depth map is built effectively. 

With the recovered depth information, we can easily 

remove the haze from a single hazy image. An 

overview of the proposed dehazing. The efficiency 

of this hazing method is high and the dehazing 

effectiveness is also high to that of prevailing 

dehazing algorithms. An overview of the proposed 

dehazing method is shown in Figure 1. 

 

Atmospheric Scattering Model : 

To explain the configuration of a hazy image, the 

atmospheric scattering model, which is proposed by 

McCartney in 1976 [20], is generally used in 

computer vision and image processing. Narasimhan 

and Nayar [21], [22], [23], [24] later they derive the 

model, and the model can be expressed as follows: 

I(𝑥)=𝐽(𝑥)𝑡(𝑥)+𝐴(1−𝑡(𝑥))                                

  (1)                              

  𝑡 (𝑥) = 𝑒−𝛽d(𝑥)                                    (2)                                            

Where x is the position of the pixel within the 

image, I is the hazy image, J is the scene radiance 

indicating the haze-free image, A is the atmospheric 

light, t is the medium transmission, 

    

  
Figure 1. An overview of the proposed dehazing 

method. Top-left: Input hazy image. Top-right: 

Restored depth map. Bottom-left: Restored 

transmission map. Bottom-right: Dehazed image 

 

β is the scattering coefficient of the atmosphere and 

d is the depth of a scene. I, J and A are all 3-D 

vectors in RGB space. Since I is known, the 

objective of dehazing is to estimate A and t, then 

restore J according to Equation (1). It is significance 

noting that the depth of scene d is the most 

important information. Since the scattering 

coefficient β can be regarded as a constant in 

homogeneous atmosphere condition [23], the 

average transmission t can be approximated easily 

according to Equation (2) if the depth of the scene is 

known. Moreover, in the ideal case, the range of 

d(x) is[0, +∞) as the scenery objects that show in the 

image can be very far away from the spectator, and 

we have:  

I(𝑥) = 𝐴, 𝑑(𝑥) → ∞                                                    

(3)  

             

Equation (3) shows that the intensity of the pixel, 

which makes the depth tend to infinity, be able to 

stand for the value of the atmospheric light A. Note 

that, if d(x) is large enough, t (x) tends to be very 

small according to Equation (2), and I(x) equals A 

approximately. Therefore, instead of calculating the 

atmospheric light A by Equation (3), we can 

approximation A by the following equation given a 

threshold dthresold :  

 

d(𝑥)=𝐴,(𝑥)≥𝑑𝑡ℎ𝑟𝑒𝑠o𝑙𝑑.                                            (4)   

                    

We also see the fact that it is not hard to satisfy this 

constraint: d(x) > 𝑑𝑡ℎ𝑟𝑒sold. In most cases, a hazy 

image taken outdoor has a far-away view that is 

kilometers away from the observer. In other words, 

the pixel belonging to the area with a far-away view 

in the image should have a very large depth 𝑑𝑡ℎ𝑟𝑒𝑠oid. 

Assuming that every hazy image has a distant view, 

we have:  

 

d(𝑥)≥𝑑𝑡ℎ𝑟𝑒𝑠o𝑙𝑑,𝑥∈{|∀𝑦∶𝑑(𝑦)≤𝑑(𝑥)}             (5)                                                        

 

Based on this hypothesis, the atmospheric light A is 

given by:  

   

𝐴=𝐼(𝑥),𝑥∈{𝑥|∀𝑦∶𝑑(𝑦)≤𝑑(𝑥)}.                        (6)               

 

On this condition, the job of dehazing can be further 

changed into depth information restoration. 

However, it is also a demanding task to obtain the 

depth map from a single hazy image. In the next 

part, present a novel color attenuation prior which is 

useful for restoring the depth information from a 

single hazy image directly. 

2. Color Attenuation Prior 

As very small information about the scene structure 

is available it is very difficult to detect or remove the 

haze from a distinct image in computer vision, In 

spite of this, the human brain can quickly recognize 

the hazy area from the natural scenery without any 

extra information. This motivated us to conduct a 
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large number of experiments on a variety of hazy 

images to find the information and seek a new prior 

for single image dehazing. Interestingly, find that the 

brightness and the saturation of pixels in a hazy 

image vary sharply along with the change of the 

haze attention. It seems that the three properties (the 

brightness, the saturation, and the difference) are 

prone to vary frequently in a sole hazy image 

according to this observation. Is this coincidence, or 

is there a fundamental reason behind this? To find 

the answer this question, first, re-examine the 

process of imaging. In the haze-free location, the 

scene element reflects the energy that is from the 

lighting source (e.g., direct sunlight, diffuse skylight, 

and light reflected by the ground), lost a portion of 

energy when it reaches the imaging system. The 

imaging system collects the inward energy reflected 

from the scene part and focuses it on the image 

plane. Without the effect of haze, outdoor images 

are typically are of different colors. In hazy 

conditions, in contrast, the situation becomes more 

difficult. There are two mechanisms (the direct 

attenuation and the air light) in imaging under hazy 

conditions [22]. On one hand, the direct attenuation 

caused by the decrease in reflected energy leads to 

the low intensity of the brightness. To recognize 

this, review the atmospheric scattering method. The 

term J(x)t(x) in Equation (1) is used for describing 

the direct attenuation.  

It reveals the fact that the intensity of the pixels 

within the image will reduce in a multiplicative way. 

So it turns out that the brightness tends to decrease 

under the control of the direct attenuation. On the 

other hand, the white or gray air light, which is 

produced by the scattering of the environmental 

illumination, enhances the brightness and minimizes 

the saturation. This can also be explained by the 

atmospheric scatter model. The rightmost term A 

(1−t (x)) in Equation (1) represents the effect of the 

air light. It can be deduced from this term that the 

effect of the white or gray air light on the 

experiential values is additive. Thus, caused by the 

air light, the brightness is increased while the 

saturation is decreased. Since the air light plays a 

more important role in most cases, hazy areas in the 

image are categorized by high brightness and low 

saturation. The denser the haze is, the stronger the 

influence of the air light would be. Since the 

concentration of the haze increases along with the 

change of the scene depth in general, make an 

assumption that the depth of the scene is positively 

correlated with the concentration of the haze and it 

gives: 

  

d(𝑥) ∝ 𝑐(𝑥) ∝ 𝑣 (𝑥) – 𝑠(𝑥)   (7)                                

 

Where d is the scene depth, c is the concentration of 

the haze, v is the brightness of the scene and s is the 

saturation. We observe these statistics as color 

attenuation prior. Figure 1 gives the statistical 

explanation of the color attenuation prior to the HSV 

color model. Figure 2(a) is the HSV color model, 

and Figure 2(b-d) are the near, moderate-distance 

and far scene depths, respectively. Vector I indicates 

the hazy image, passing through the origin and 

performing the projection of the vector I onto a 

horizontal plane Setting the angle between vector I 

and its projection as α, according to the HSV color 

model, when α varies between 0 and 90 degrees, the 

higher the value of α is, the higher the value of 

tangent α is, which indicates the greater the 

difference between the component of I in the 

direction of  v and the component of I in the 

direction of S. As the depth increases, the value v 

increases and the saturation s decreases, and 

therefore α increases. In other words, the angle α is 

positively correlated with the depth. It is worth to 

point out that Equation (7) is just an intuitional 

result of the observation and it cannot be an accurate 

expression about the links among d, v, and s. We 

will find the way to create a more robust expression 

in the following sections. 

 
Figure. 2. The geometric description of the color 

attenuation prior. (a) The HSV color model. (b) The 

near scene depth condition. (c) The moderate 

distance condition. (d) The far scene depth condition 

3. Scene Depth Restoration 

 

A. The Linear Model Definition  

As the disparity between the brightness and the 

saturation can approximately represent the 

concentration of the haze, then it can create a linear 

model, i.e., a more precise expression, as follows:  

 

d(𝑥) = 𝜃0 + 𝜃1𝑣(𝑥) + 𝜃0𝑠(𝑥) + ε(x)          (8) 
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Where x is the position within the image, d is the 

scene depth, v is the brightness component of the 

hazy image, s is the saturation component, θ0, θ1, θ2 

are the unknown linear coefficients, ε(x) is a random 

variable expressive the random error of the model, 

and ε can be regarded as a random image. Use a 

Gaussian density for ε with zero mean and variable 

σ2 (i.e. ε(x) ∼N(0, σ2)). According to the property of 

the Gaussian distribution:  

 

d(𝑥)~(𝑑(𝑥)|𝑥,𝜃0,𝜃1,𝜃2,𝜎
2
)=(𝜃0+𝜃1𝑣+𝜃2𝑠,𝜎2

)       

 (9)           

One of the most important advantages of this model 

is that it has the edge-preserving property. To show 

this, calculate the gradient of d in Equation (8):  

  

∇𝑑 = 𝜃1∇𝑣 + 𝜃2∇𝑠 + ∇𝜀                (10) 

  

Due to that σ can never be too large in practice; the 

value of ε(x) tends to be very low and close to zero. 

In this case, the value of ∇𝜀is low enough to be 

ignored.  

 

This further ensures that the depth information can 

be well recovered even near the depth discontinuities 

in the scene. In the following sections, use a simple 

and efficient supervised learning method to 

determine the coefficients𝜃0, 𝜃1, 𝜃2and the variable 

𝜎2. 

B. Training Data Collection  

In order to discover the coefficients θ0, θ1, and θ2 

exactly, the training data are needed. In this case, a 

training sample consists of a hazy image and its 

corresponding ground fact depth map. 

Unfortunately, the depth map is very complex to 

obtain due to the fact that there are no reliable means 

to calculate the depths of outdoor scenes. Current 

depth cameras such as Kinect are not able to obtain 

the accurate depth information. Inspired by 

 
Figure 3. The process of generating the training 

samples with the haze-free images. Left sub-figure: 

The haze-free images. Center sub-figure: The 

generated random depth maps. Right sub-figure: The 

generated hazy images.  

 

Tang et al.’s method for preparing the training data 

[27], then collect the haze-free images from Google 

Images and Flickr and use them to create the 

synthetic depth maps and the equivalent hazy images 

for obtaining sufficient training samples. Generating 

the training samples is illustrated in Figure 3. Firstly, 

we generate a random depth map of each haze-free 

image with the same size. The values of the pixels 

within the synthetic depth map are drawn from the 

standard uniform distribution on the open interval 

(0, 1). Secondly, we generate the random 

atmospheric light A (k, k, k) where the value of k is 

between 0.85 and 1.0. Finally, we generate the hazy 

image I with the random depth map d and the 

random atmospheric light A according to Equation 

(1) and Equation (2). 

 

C. Learning Strategy  

In the joint conditional concentration:  

 

𝐿 = (d(𝑥1) , … , 𝑑(𝑥𝑛)|𝑥1, … , 𝑥𝑛 , 𝜃0, 𝜃1, 𝜃2, 𝜎2)           

(11)  

 

Where n is the total number of pixels within the 

training hazy images, (𝑥𝑛)is the depth of the nth 

scene point, and L is the likelihood. Let that the 

random error at each scene point is independent (i.e. 

(𝜀1, … , 𝜀𝑛) = Πi=1,…np(εi))〗,it can rewrite 

Equation (11) as:  

 

   𝐿 =                     

(12)    

According to Equation (9) and Equation (12), it 

gives:  

 

 𝐿 =               

(13)            

 

where 𝑑𝑔𝑖 represents the ground truth depth of the 

ith scene point. So the problem is to find the optimal 

values of θ0, θ1, θ2, and σ to maximum L. For 

convenience, instead of maximizing the probability 

directly, we maximize the natural logarithm of the 

probability ln L. Therefore, the problem can be 

expressed as follows:  

 

   

(14) 

 

To solve the problem, first calculate the partial 

derivative of  

lnL with respect to σ and make it equal to zero:  
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=- + (xi)))              

(15) 

 

According to Equation (18), the maximum 

likelihood estimate for the variable σ2 is:  

 

𝜎2
= 𝑑𝑔𝑖−(              

(16)      

 

As for the linear coefficients θ0, θ1 and θ2 use the 

gradient descent algorithm to estimate their values. 

By taking the partial derivatives of lnL with respect 

to θ0, θ1 and θ2 respectively,  

 

Algorithm 1 Parameters Estimation  

Input:  the training brightness vector v, the training 

saturation vector s, the training depth vector d, and 

the number of iterations t  

Output: linear coefficient𝜃0, 𝜃1, 𝜃2, the variance 

𝜎2  

Auxiliary functions:  

Function for obtaining the size of the vector: n=size 

(in)  

Function for calculating the square: out=square (in)  

Begin  

1: n=size(v);  

2: 𝜃0 = 0; 𝜃1 = 1; 𝜃2 = −1;  

3:𝑠𝑢𝑚 = 0; 𝑤𝑆𝑢𝑚 = 0; 𝑣𝑆𝑢𝑚 = 0; 𝑠𝑆𝑢𝑚 = 0;  

4: for iteration from 1 to t do  

5: for index from 1 to n do  

6: temp=[𝑖] − 𝜃0 − 𝜃1 ∗ 𝑣 [𝑖] − 𝜃2 ∗ 𝑠 ;  

7: 𝑤𝑆𝑢𝑚 = 𝑣𝑆𝑢𝑚 + 𝑡𝑒𝑚𝑝;  

8: 𝑠𝑆𝑢𝑚 = 𝑠𝑆𝑢𝑚 + [𝑖] ∗ 𝑡𝑒𝑚𝑝;  

9: 𝑠𝑆𝑢𝑚 = 𝑠𝑆𝑢𝑚 + [𝑖] ∗ 𝑡𝑒𝑚𝑝;  

10: 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (𝑡𝑒𝑚𝑝);  

11: end for  

12: 𝜎2 = 𝑠𝑢𝑚/𝑛;  

13: 𝜃0 = 𝜃0 + 𝑤𝑆𝑢m ; 𝜃1 = 𝜃1𝑣𝑆𝑢𝑚; 𝜃2 = 𝜃2 + 

𝑠𝑆𝑢𝑚;  

14: end for  

End  

 

It can obtain the following expressions:  

 

 =               (17)                           

 

   =           (18)                     

 

  =    (19)                            

           

The expression for updating the linear coefficients 

can be in brief expressed by:  

 

𝜃𝑖=𝜃𝑖+ 𝑠.𝑡.𝑖𝜖{0,1,2}                                   (20)                                           

          

It is worth noting that the expression above is used 

for iterating dynamically, and the notation: = does 

not express the mathematical equality but means that 

setting the value of θi in the left term to be the value 

of the right term. The process for learning the linear 

coefficients θ0, θ1, θ2 and the variable σ2 is shown 

in Algorithm 1.  

 

D. Estimation of the Depth Information  

As the among link between the scene depth d, the 

brightness v, and the saturation s has been 

recognized and the coefficients have been estimated, 

then it can restore the depth map of a given input 

hazy image according to Equation (8).However, this 

model may fail to work in some particular situations. 

For example, the white objects in an image are 

frequently with high values of the brightness and 

low values of the saturation. Therefore, the model 

tends to consider the scene objects with white color 

as being far away. Unluckily, this misclassification 

will result in inaccurate estimation of the depth in 

some cases. In the white geese in the image are the 

regions for which the model can barely handle, and 

these regions are wrongly estimated with high depth 

values in the depth map. To overcome this problem, 

need to consider each pixel in the neighborhood. 

Based on the hypothesis that the scene depth is 

locally constant, and then process the raw depth map 

by:  

 dr(𝑥)                                              

(21) 

 

Where r (x) is an r ×r neighborhood centered at x, 

and 𝑑𝑟is the depth map with scale r. The new depth 

map d15 can well handle the geese regions. 

However, it is also obvious that the blocking 

artifacts show in the image. To process the depth 

map, use the guided image filtering [28]to smooth 

the image. The final restored depth map of the hazy 

image can be seen, the blocking artifacts.  

4. Scene Radiance Recovery  

A. Estimation of the Atmospheric Light : 

The main idea of estimating the atmospheric light 

explained in Section II. In this section, explain the 

method in more detail. As the depth map of the input 

hazy image has been improved, the allocation of the 

scene depth is known. Bright regions in the map 
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stand for distant places. According to Equation (6), 

pick the top 0.1 percent brightest pixels in the depth 

map, and select the pixel with maximum intensity in 

the corresponding hazy image I among these 

brightest pixels as the atmospheric light A. 

B. Scene Radiance Recovery : 

Now that the depth of scene d and the atmospheric 

light Aare known, it can estimate the medium 

transmission t simply according to Equation (2) and 

improve the scene radiance Jin Equation (1). For 

ease, rewrite Equation (1) as follows:  

 

𝐽(𝑥) =                                

(22) 

 

For avoiding producing too much noise, limit the 

value of the transmission t (x) between 0.1 and 0.9. 

So the final function used for restoring the scene 

radiance J in the method can be expressed by:  

 

𝐽(𝑥)= +𝐴                                   

(23)               

  

Where J is the haze-free image. Figures (4) show 

some finishing results of dehazing of the given 

method. Note that the scattering coefficient β, which 

can be regarded as a constant [23] in homogeneous 

regions, the ability of a unit volume of atmosphere 

to scatter light in all directions. In other words, β 

determines the intensity of dehazing indirectly. 

Therefore, a moderate β is essential when dealing 

with the images with dense-haze regions. In most 

cases, β = 1.0 is more than enough. 

 

5. Experiments  

In order to verify the usefulness of the given 

dehazing method, test it on various hazy images and 

compare with He et al.’s [17] method. All the 

algorithms are implemented in the MatlabR2012a 

environment on a P4-2.3GHz PC with 4GB RAM. 

The parameters used in the given method are 

initialized as follows: r = 15, β = 1.0, θ0 = 0.121779, 

 
Figure. 4. Qualitative comparison of different 

methods on real-world images (a) The hazy images 

(b) Tarel et al.’s results (c) Nishino et al.’s results(d) 

He et al.’s results (e) Meng et al.’s results (f) multi-

scale methods result (g) Our results 

 

Sobel detection refers to computing the gradient 

magnitude of an image using 3x3 filters. Where 

"gradient magnitude" is, for each a pixel, a number 

giving the greatest rate of change in light intensity in 

the direction where intensity is changing fastest. 

Canny edge detection goes a bit further by removing 

speckle noise with a low pass filter first, then 

applying a Sobel filter, and then doing non-

maximum suppression to pick out the best pixel for 

edges when there are multiple possibilities in a local 

neighborhood. That's a simplification, but basically 

its smarter than just applying a threshold to a Sobel 

filter, but it is still fairly low level processing. 

 

Edge-preserving smoothing is an image 

processing technique that smooth’s away textures 

whilst retaining sharp edges. E.g. the bilateral filter, 

the guided filter. When we need to preserve edge 

information and at the same time preserve the edges. 

Even when uniform smoothing does not remove the 

boundaries, it does distort them. This is not 

acceptable in the context of, for example, medical 

imaging. 

 

Typical edge preserved filtering includes two 

types: Kuwahara filtering and selective mask 

filtering. The basic process of them is described as 

follows: Firstly, some different templates are made 

based on the center pixel. Secondly, the mean value 

and the standard deviation of the pixels in different 

templates are calculated. Finally, the gray value of 

the center pixel is defined as the mean value in the 

template where the standard deviation is the least. 

 

The Kuwahara filter is a non-linear 

smoothing filter used in image processing for 
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adaptive noise reduction. Most filters that are used 

for image smoothing are linear low-pass filters that 

effectively reduce noise but also blur out the edges. 

However the Kuwahara filter is able to apply 

smoothing on the image while preserving the edges.  

 

6. Conclusion 

In order to reduce Gaussian noise, we usually want 

to smooth the image. But we do not want to smooth 

out the true edges in the image. Hence, we use Edge 

Preserving Smoothing filter. In this paper, we have 

used "Kuwahara Filter" instead of "Guided Filter". 

[He et.al]. Guided filters use integral image to 

perform smoothing. Hence, the computational 

complexity is not dependent on the size of the 

smoothing kernel. The computational time depends 

may increase if size of filter image increase.  But 

Kuwahara filter does not require filter image and it 

is a non-linear smoothing filter.   

Although we have found a way to model the 

scene depth with the brightness and the saturation of 

the hazy image, there is still a common problem to 

be solved. That is, the scattering coefficient β in the 

atmospheric scattering model cannot be regarded as 

a constant in inhomogeneous atmosphere conditions. 

For example, a region which is kilometres away 

from the observer should have a very low value 

of β . Therefore, the dehazing algorithms which are 

based on the atmospheric scattering model are prone 

to underestimating the transmission in some cases. 

As almost all the existing single image dehazing 

algorithms are based on the constant-β assumption, a 

more flexible model is highly desired. To overcome 

this challenge, some more advanced physical 

models can be taken into account.  In future work 

these methods may be tested on videos. 

References 

[1] G. A. Woodell, D. J. Jobson, Z.-U. Rahman, 

and G. Hines, “Advanced image processing 

of aerial imagery,” Proc. SPIE, vol. 6246, p. 

62460E, May 2006. 

[2]   L. Shao, L. Liu, and X. Li, “Feature 

learning for image classification viamulti 

objective genetic programming,” IEEE 

Trans. Neural Netw. Learn.Syst., vol. 25, no. 

7, pp. 1359–1371, Jul. 2014. 

[3]   F. Zhu and L. Shao, “Weakly-supervised 

cross-domain dictionary learning for visual 

recognition,” Int. J. Comput. Vis., vol. 109, 

nos. 1–2,pp. 42–59, Aug. 2014. 

[4]   Y. Luo, T. Liu, D. Tao, and C. Xu, 

“Decomposition-based transfer distance 

metric learning for image classification,” 

IEEE Trans. ImageProcess., vol. 23, no. 9, 

pp. 3789–3801, Sep. 2014. 

[5]   Tao, X. Li, X. Wu, and S. J. Maybank, 

“Geometric mean for subspaceselection,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 

31, no. 2,pp. 260–274, Feb. 2009. 

[6]   J. Han et al., “Representing and retrieving 

video shots in human-centricbrain imaging 

space,” IEEE Trans. Image Process., vol. 22, 

no. 7,pp. 2723–2736, Jul. 2013. 

[7]   J. Han, K. Ngan, M. Li, and H.-J. Zhang, 

“A memory learning frameworkfor effective 

image retrieval,” IEEE Trans. Image 

Process., vol. 14,no. 4, pp. 511–524, Apr. 

2005. 

[8]   Tao, X. Tang, X. Li, and X. Wu, 

“Asymmetric bagging and randomsubspace 

for support vector machines-based relevance 

feedback in imageretrieval,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 28, no. 7,pp. 

1088–1099, Jul. 2006. 

[9]   J. Han, D. Zhang, G. Cheng, L. Guo, and J. 

Ren, “Object detection inoptical remote 

sensing images based on weakly supervised 

learning andhigh-level feature learning,” 

IEEE Trans. Geosci. Remote Sens., vol. 

53,no. 6, pp. 3325–3337, Jun. 2015. 

[10]  Cheng et al., “Object detection in remote 

sensing imagery using adiscriminatively 

trained mixture model,” ISPRS J. 

Photogramm. RemoteSens., vol. 85, pp. 32–

43, Nov. 2013. 

[11] J. Han et al., “Efficient, simultaneous 

detection of multi-class geospatialtargets 

based on visual saliency modeling and 

discriminative learning ofsparse coding,” 

ISPRS J. Photogramm. Remote Sens., vol. 

89, pp. 37–48, Mar. 2014. 

[12] L. Liu and L. Shao, “Learning 

discriminative representations fromRGB-D 

video data,” in Proc. Int. Joint Conf. Artif. 

Intell., Beijing, China,2013, pp. 1493– 1500. 

[13] D. Tao, X. Li, X. Wu, and S. J. Maybank, 

“General tensor discriminant analysis and 

Gabor features for gait recognition,” IEEE 

Trans. PatternAnal. Mach. Intell., vol. 29, 

no. 10, pp. 1700–1715, Oct. 2007. 

[14] Z. Zhang and D. Tao, “Slow feature analysis 

for human actionrecognition,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 34, no. 3,pp. 

436–450, Mar. 2012. 

[15] R. Fattal, “Single image dehazing,” ACM 

Trans. Graph., vol. 27, no. 3, p. 72, Aug. 

2008. 



Miss. Anjana Navale, IJECS Volume 7 Issue 2 February 2018 Page No. 23585-23592 Page 23592 

[16] P. S. Chavez, Jr., “An improved dark-object 

subtraction technique for atmospheric 

scattering correction of multispectral data,” 

Remote Sens. Environ., vol. 24, no. 3, pp. 

459–479, Apr. 1988. 

[17] K. He, J. Sun, and X. Tang, “Single image 

haze removal using dark channel prior,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 

33, no. 12, pp. 2341–2353, Dec. 2011. 

[18] L. Breiman, “Random forests,” Mach. 

Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001. 

[19] Q. Zhu, J. Mai, and L. Shao, “Single image 

dehazing using color attenuation prior,” in 

Proc. Brit. Mach. Vis. Conf. (BMVC), 

Nottingham, U.K., 2014, pp. 1–10. 

[20] E. J. McCartney, Optics of the Atmosphere: 

Scattering by Molecules and Particles. New 

York, NY, USA: Wiley, 1976. 

[21] S. K. Nayar and S. G. Narasimhan, “Vision 

in bad weather,” in Proc. IEEE Int. Conf. 

Comput. Vis. (ICCV), vol. 2. Sep. 1999, pp. 

820–827. 

[22] S. G. Narasimhan and S. K. Nayar, 

“Contrast restoration of weather degraded 

images,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 25, no. 6, pp. 713–724, Jun. 

2003. 

[23] S. G. Narasimhan and S. K. Nayar, “Vision 

and the atmosphere,” Int. J. Comput. Vis., 

vol. 48, no. 3, pp. 233–254, Jul. 2002. 

[24] S. G. Narasimhan and S. K. Nayar, 

“Removing weather effects from 

monochrome images,” in Proc. IEEE Conf. 

Comput. Vis. PatternRecognit. (CVPR), 

2001, pp. II- 186–II-193. 

[25] J.-P. Tarel, N. Hautière, L. Caraffa, A. 

Cord, H. Halmaoui, and D. Gruyer, “Vision 

enhancement in homogeneous and 

heterogeneousfog,” IEEE Intell. Transp. 

Syst. Mag., vol. 4, no. 2, pp. 6–20, Apr. 

2012. 

[26] C. O. Ancuti, C. Ancuti, C. Hermans, and P. 

Bekaert, “A fast semiinverse approach to 

detect and remove the haze from a single 

image,” in Proc. Asian Conf. Comput. Vis. 

(ACCV), 2010, pp. 501–514. 

[27] K. Tang, J. Yang, and J. Wang, 

“Investigating haze-relevant features in a 

learning framework for image dehazing,” in 

Proc. IEEE Conf. Comput. Vis. Pattern 

Recognit. (CVPR), Jun. 2014, pp. 2995–

3002. 

[28] K. He, J. Sun, and X. Tang, “Guided image 

filtering,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 

2013. 

[29] A. J. Preetham, P. Shirley, and B. Smits, “A 

practical analytic model for daylight,” in 

Proc. ACM Special Interest Group 

Comput.Graph. (SIGGRAPH), pp. 91–100. 

[30] Q. Zhu, J. Mai and L. Shao, ”A Fast Single 

Image Haze Removal Algorithm Using Color 

Attenuation Prior,” in IEEE Transactions on 

Image Processing, vol. 24, no. 11, pp. 3522-

3533, Nov. 2015. 

 

 

 


