
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 7 Issue 2 February 2018, Page No. 23578-23584

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v7i2.09

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23578

A Fault Tolerant Scheme for Detecting Overflow in Residue Number

Microprocessors
Agbedemnab P. A.

1
, Agebure M. A.

2
& Akobre S.3

1,2,3

Department of Computer Science, University for Development Studies

P. O. Box 24, Navrongo Campus, Ghana

Abstract: The decomposition of larger numbers into smaller ones termed as residues is the main operation behind the concept of Residue

Number System (RNS); it possesses inherent features such as parallelism and independent digit arithmetic computations. These features of the

RNS has made it desirable for applications that require intensive computations such as Digital Signal Processing (DSP), Digital Filtering and

Convolutions. Overflow detection is one of the major challenges that confront the efficient implementation of RNS in general purpose computer

processors. Overflow occurs in RNS when an illegitimate value is represented within legitimate range – Dynamic Range (DR) as if it is

legitimate value. This misrepresentation of results, which usually arises during addition operations ultimately affects systems built on this

Number System. It is therefore imperative that steps are taken not to only detect but correct the occurrence of overflow whenever it occurs. In

this paper, an additive overflow detection and correction scheme for the moduli set * + is presented. The scheme uses a

redundant modulus to extend the DR of the moduli set. The proposed scheme is demonstrated theoretically to be an efficient scheme by

comparing it to previous similar works.

Keywords: Residue Number System (RNS), Digital Signal Processing (DSP), Overflow Detection, Number System, Dynamic Range.

1. Introduction

A riddle by Sun Tzu, a Chinese scholar in a book authored in

the first century was the first documented manifestation of

Residue Number System (RNS) representation [1] and [2].

Summarily, the riddle sought to find out a number that will

yield the remainders 2, 3, and 2 when divided by 3, 5, and 7,

respectively; thus in modern terminology, 2, 3, and 2 are the

residues, and 3, 5, and 7, are the moduli that make the RNS.

This number system was later rediscovered by computer

scientists who found it necessary in the implementation of fast

arithmetic and fault-tolerant computing [1]. Three properties of

RNS make it well suited for these: the first is absence of carry-

propagation in addition and multiplication, carry-propagation

being the most significant speed-limiting factor in these

operations. The second is that because the residue

representations carry no weight-information, an error in any

digit-position in a given representation does not affect other

digit-positions. The third is that there is no significance-

ordering of digits in an RNS representation, which means that

faulty digit-positions may be discarded with no effect other

than a reduction in dynamic range. This renewed interest is

even more prominent now because a great deal of computing

now takes place in embedded processors, such as those found

in mobile devices, and for these, high speed and low-power

consumption are critical; the absence of carry-propagation

facilitates the realization of high-speed, low-power arithmetic.

Also, computer chips are now getting to be so dense that full

testing will no longer be possible and therefore, makes fault-

tolerance and the general area of computational integrity

essential. Lastly, there has been progress in the implementation

of some difficult arithmetic operations such as division,

number/data conversion, scaling, overflow and magnitude

detections [3],[4].

An RNS number , is represented as , where

 * +, a set of pairwise relatively prime

integers such that () , . The

residue set , - is uniquely represented

provided lies within the legitimate range , - where

 ∏

 is the Dynamic Range (DR) for the chosen

moduli set. Let and be two different integers within the

DR, if , (are the arithmetic operations ,), [5],

results in a value that is outside the legitimate range, then

overflow is said to have occurred.

Overflow is an error in computing as a result of

misrepresentation of illegitimate values in a given memory

space [6], [4]; this relates to the DR in RNS which situation

usually arises during addition and multiplication operations.

Thus, detecting overflow is one of the fundamental issues in

the design of efficient RNS microprocessors [7].

The conversion of an RNS number into its decimal/binary

equivalent number has long been mainly based on the Chinese

Remainder Theorem (CRT) and the Mixed Radix Conversion

(MRC) techniques with few modifications being their variants

in recent times. Whiles the former deals with the modulo-

operation, the later does not but computes sequentially which

tends to reduce the complexity of the architecture.

The MRC, as used in this paper is famously computed as

follows:

 (1)

where are the Mixed Radix Digits (MRDs)

and computed as follows:

 |()|
 | |

 |.()|
 | / |

 | |

 |. .()|
 | / |

 |

 / |
 | |

 (2)

The MRDs are within the range , and a

positive number, , in the interval , - can be uniquely

represented.

http://www.ijecs.in/

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23579

Recently, some techniques have been developed to detect

overflow without necessarily completing the reverse

conversion process; [8] proposed an algorithm to detect

overflow in the moduli set ()
using a parity checking technique but used ROMs for

implementation. In [9], a method for detecting overflow in the

moduli set () based on group of numbers is

presented where numbers within , - are distributed

among several groups. Then, by using the groupings, the

scheme is able to diagnose in the process of addition of two

numbers, whether overflow has occurred or not. The scheme in

[5] evaluated the sign of the sum of two numbers and and

used it to detect overflow but adopted a residue-to-binary

converter proposed by [10]. The scheme in [11] presented a

scheme by an Operands Examination Method for overflow

detection for the moduli set () during RNS

addition. All these schemes either relied on complete reverse

conversion process as in the case of [5], or other costly and

time consuming procedures such as base extension, group

number and sign detection as in [9] and [11]. In this paper, an

additive overflow detection and correction scheme for the

moduli set * +, which has odd

dynamic range is presented. The scheme uses a redundant

modulus – by extending the dynamic range of the moduli

set. This redundant modulus is then used to detect overflow

during addition whenever it occurs by XORing the sum of the

residues corresponding to the redundant modulus and the LSB

of the result of summing the residues corresponding to two

numbers in the original moduli set.

2. Proposed Method

Given the moduli set * +, [12], [13],

let
 ,

 and
 . Let

 be a redundant modulus by extending the original

moduli set. In order to detect overflow in the given moduli set,

a redundant modulus is added so that the new set becomes

* +; but the dynamic range
()()().
Theorem 1: Given the moduli set * +,
where

 ,
 and

 ,

we have;

|
 | (3)

|
 | (4)

|
 |

 (5)

Proof: If it can be shown that | | , then | |

| | is the multiplicative inverse of . Thus, for (3)

|() | |((
)())|

 |(()())|

 | |

Hence is the multiplicative inverse of with respect to .

Similarly, for (4)

|() | |((
)())|

 | |

Hence is the multiplicative inverse of with respect to .

Also, for (5)

|() | |()
 |

 | |

 | |

Hence is the multiplicative inverse of with respect to

 .

Given the RNS numbers () and
().
Let the sum () (), .

Then two scenerios arise;

(i) If both addends have the same parity then
() is even and

(ii) If the addends have different parity then
() is odd and

Therefore, overflow occurs whenever () is odd

and or () is even and . Thus, the

proposed method detects overflow as follows;

 {
 ()

 (6)

Where () is the least significant bit of the sum Z.

Next, a partial residue-binary conversion of the addends is

done by computing their respective MRDs. The MRDs of one

addend (say) is done by substituting (3) – (5) into equation

(2) to simplify as follows;

 |() |

 | |

 |(())
 |

 | ()
 | (7)

Therefore, is obtained by adding the individual MRDs of the

two addends. In case of an occurrence of overflow, the

dynamic range should be shifted one bit to the left thus

including the modulus 2 in order to legitimize the value of .

The value of computed this way is the correct result whether

overflow occurs or not.

3. Hardware Implementation

From equation (7), the MRDs can be represented in binary as;

 ⏟

 (8)

 ⏟

 (9)

 ⏟

 (10)

Equations (8) – (10) can further be simplified as follows;

 ⏟

 (11)

 | |

 | ⏟

 ⏟

|

 ⏟

 (12)

where,

 | ()⏟

|

 | ̅ ⏟

 ̅ ̅ ⏟

 ̅ ̅ ⏟

|

 (13)

Let ̅ ⏟

 ̅ ̅ ̅ ⏟

 and

 ̅ ̅ ̅ ⏟

 (14)

Also,

 |
 ()

 |

 | ⏟

 ⏟

 ⏟

|

 ⏟

 (15)

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23580

where,

 | |

 | ()⏟

|

 | ()⏟

 ()⏟

 ()⏟

|

 | ̅ ⏟

 ̅ ̅ ̅ ⏟

 ̅ ̅ ̅ ⏟

|

(16)

Let

 ⏟

, ̅ ⏟

, ̅ ̅ ⏟

and ̅ ̅ ̅ ⏟

 (17)

Finally,

 | |

 | ()⏟

|

 | (
)⏟

|

 (18)

Since, is a number that is smaller than , two cases can

be considered. First, when is smaller than , and second,

when is equal to [13].

If , we have

 |
 ()⏟

|

 ̅ ̅ ̅ ̅ ⏟

 (19)

Else if , the following binary vector can be obtained as

 |
 (⏟

)|

 ⏟

 (20)

Therefore, is calculated as

 {

 (21)

Let and represent the MRDs of the two integers and

respectively. Then from equations (11), (12) and (15), we have

 (22)

which implies

 ⏟

 ⏞

 (23)

 ⏟

 ⏞

 (24)

finally,

 ⏟

 ⏞

 (25)

and so, Z is implemented as;

 ⏟

 ⏞

 ⏟

 ⏞

 ⏟

 ⏞

 ⏟

 ⏞

 ⏟
 ⏟

(26)

where,

 ⏟

 ⏞

 ⏟

 (27)

and,

 ⏟

 ⏞

 ⏟

 (28)

 ⏟

 ⏞

 (29)

 ̅ ̅ ̅ ̅ ⏟

 (30)

 ̅ ̅ ̅ ̅ ⏟

 (31)

finally,

 ̅ ̅ ̅ ̅ ⏟

 ⏞

 (32)

3.1 Hardware Realisation

The hardware architecture of the proposed scheme is first

realised by computing the MRDs of the two addends and

according to (12) and (15) which parameters are defined in

(13), (14), (16), (17) and (21). These MRDs are and , and

 in (4) which is equivalent to . Figure 1 shows the unit for

computing the MRDs of one addend and repeated for the

other addend . Figure 1 consists of a two level Carry Save

Adder (CSA) tree for computing and another three level

CSA tree for computing whose sum and carry are added

using two separate CPAs each. This unit is called here Partial

Reverse Converter (PRC) as a component of the proposed

scheme. The PRC starts with an Operands Preparation Unit

(OPU 1), which prepares the operands in (14) and (17) by

simply manipulating the routing of the bits of the residues. The

operands in (14) are added with CSA 1 at a first level and at a

second level includes in CSA 3 which sum and carry are

added using CPA 1 to get . A multiplexer is used to

determine (21) by either choosing (19) or (20) depending on

the MSB of . The value from (21) and the operands in (17)

are then added using the three level CSA tree in CSA 2, CSA 4

and CSA 5 and finally propagated with CPA 2 in order to get

 . These MRDs are useful in computing the sum of the

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23581

addends by the Reverse Converter (RC) in Figure 2. The

respective MRDs of the addends are summed according to (23)

– (25) and computed according to CPA 3, CPA 4 and CPA 5.

These and other four adders make up the architecture in the

reverse converter for the sum Z in Figure 2. After an operand

preparation (26) is computed by a three level carry save tree in

CSA 2, CSA 3 and CSA 4 in a cascading manner whose sum

and carry are then added using CPA 6 in order to get Z which

is the correct result of the addition operation whether overflow

occurs or not. Finally, overflow is detected by XORing the

LSB(Z) with | | according to (6) and shown in Figure 3.

The hardware complexities and delay (time required for

processing) of the proposed scheme are estimated as follows;

The area () and delay () of the PRC are:

 () ()

 ()

 ()

The area requirement and delay imposed by the RC are:

 () () ()

 () ()

 ()

 () ()

 ()

The ODU is a two input XOR gate and requires a unit of gate

each for the area and delay. Equations (27) and (28) are

realised by merely joining (concatenating) bits since the sum of

 and is computed as concatenation if is an -bit

number [14], hence does not require any hardware or impose a

delay. Also, the area for two addends will be double in the case

of the PRC but the same delay.

Therefore, the total area requirements and delay of the

proposed scheme are:

 () ()

 ()

 () ()

 ()

The schematic diagrams of the proposed scheme are shown in

Figures 1, 2 and 3.

𝐿𝑆𝐵 (𝑍) 𝑧

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤

Operand Preparation Unit (OPU 1)

𝑛-bit CSA 1

(Mod (𝑛) adder)

sel

𝑒 𝑛

𝑥

0

1

𝑥

𝑥

𝐶

𝐴

𝐵

𝐴

𝐴

𝑥

𝐶

𝑒

𝑒

𝑠

𝑐

MUX

𝑛-bit CSA 1

(Mod (𝑛 1) adder)

𝑛-bit CSA 3

(Mod (𝑛) adder)

𝑛-bit CSA 4

(Mod (𝑛 1) adder)

𝑛-bit CPA 1

𝑛-bit CSA 5

(Mod (𝑛 1) adder)

𝑛-bit CPA 2

𝐵

𝐵

𝐵

𝑐

𝑠

𝑠

𝑐

𝑠

𝑐

𝐶

𝑠

𝑐

Figure 1: Partial Reverse Converter (PRC)

Figure 2: Overflow Detection Unit (ODU)

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23582

3.2 Numerical Illustrations

This section presents numerical illustrations of the proposed

scheme.

Checking overflow in the sum of 225 and 275 using RNS

moduli set * +.
Legitimate range (DR) = 465. Let;

 () (| | |)

() (| | |)

 () (| | |)

() (| | |)

 (() ())
 (| | |)

 () (| | |)

RNS to decimal conversion of () (| |)

results in decimal number 35. Meanwhile the sum of 225 and

275 is 500, a clear case of overflow occurrence.

Checking for RNS overflow using the proposed method

 () (| | |) implies and

 () (| |) which

implies ()

Therefore, () . Thus overflow

has occurred according to the proposed method since both

numbers have the same parity.

Correction part

The correct value of is RNS to decimal conversion of

() (| | |) which results in decimal

number 500.

Checking overflow in the sum of 225 and 322 using RNS

moduli set * +.
Legitimate range (DR) = 465. Let;

 () (| | |)

() (| | |)

 () (| | |)

() (| | |)

 (() ())
 (| | |)

 () (| | |)

RNS to decimal conversion of () (| |)

results in decimal number 82. Meanwhile the sum of 225 and

322 is 547, a clear case of overflow occurrence.

Checking for RNS overflow using the proposed method

 () (| | |) implies and

 () (| |) which

implies ()

Therefore, () . Thus overflow

has occurred according to the proposed method since both

numbers have different parity.

Correction part

The correct value of is RNS to decimal conversion of

() (| | |) which results in decimal

number 547.

Checking overflow in the sum of 225 and 35 using RNS moduli

set * +.
Legitimate range (DR) = 465. Let;

 () (| | |)

() (| | |)

 () (| | |)

() (| | |)

 (() ())
 (| | |)

 () (| | |)

RNS to decimal conversion of () (| |)

results in decimal number 260 which is the correct result of

summing 225 and 35. In this case overflow has not occurred.

Checking for RNS overflow using the proposed method

 () (| | |) implies and

 () (| |) which

implies ()

Therefore, () . Thus overflow

has not occurred according to the proposed method.

Since overflow has not occurred, there will not be any need for

the correction unit.

4. Performance Evaluation

The performance of the proposed scheme is compared to

similar schemes of equal dynamic range reverse converter as

well as the scheme by [8] that have odd dynamic range. The

complexities that are considered here for the analysis are a Full

Adder (FA), a Half Adder (converted to FA) and a two input

XOR gate. It is also worth noting that the complexities (area)

CPA3
(2n+1) bit

𝛾 𝜔

CPA4

(n+1) bit

𝛾 𝜔

CPA5

(n 1) bit

𝛾 𝜔

Concatenation

Concatenation

Operands Preparation

CSA2- (4n+1) bit

CSA3- (4n+1) bit

CSA4- (4n+1) bit

CPA6- (4n+1) bit

𝑍

𝑡

𝜓 𝜓 𝜓

 𝑛

𝑡

 𝑛

𝑡 𝑡 𝑡 𝑡 𝑡

𝑐 𝑠

𝑠 𝑐

𝑠 𝑐

Figure 3: Reverse Converter (RC)

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23583

as presented in [15] are for a single number (say) and so

would have to be doubled in order to take care of two numbers

(say and) for the reverse conversion process. Table 1

presents the complexities and delay by the various schemes for

the purpose of comparison.

Table 1: Area and Delay analysis of proposed scheme with

similar schemes of equal DR

Scheme AREA DELAY

 [15] (()) ()

[8] () ()

Proposed

Scheme

() ()

From Table 1, it is obvious that the proposed scheme is better

than [8] in terms of the area complexities even though the

delay is almost the same, but the proposed scheme has a

correction component. Also, the proposed scheme performs

better than the scheme by [15] for higher values of , in both

area and delay. A detailed analysis is presented in Table 2

taking some values of .

Table 2: Area, Delay analysis for various values of n for

scheme

Table 2 shows detailed analysis of the area and delay

comparison of scheme3 for various values of with similar-

state of the art schemes. The results from Table 2 are used to

plot the graphs in Figure 4 and Figure 5; Figure 4 is a graph of

area comparison of the various schemes. It shows that the

proposed scheme requires the lesser area than the other

schemes. Figure 5 also presents the graph of the delay

comparison of the compared schemes which shows however

that the proposed scheme and the scheme by [8] have almost

the same speed but performs better than the scheme by [15].

Figure 4: Graph of area analysis of proposed scheme3 with

other schemes

Figure 5: Graph of delay analysis of proposed scheme3 with

other schemes

5. Conclusion

In this paper, an additive overflow detection and correction

scheme for the moduli set * + was

presented. The scheme used a redundant modulus to extend

the dynamic range of the moduli set. Overflow was then

detected during addition whenever it occurred by XORing the

residue corresponding to the redundant modulus and the LSB

of the result by summing the residues corresponding to two

numbers in the original moduli set. The proposed scheme was

demonstrated theoretically to be an efficient scheme by

comparing it to previous similar works. Practical

implementation of the proposed scheme using Field

Programmable Gate Arrays (FPGAs) will actualise the real

gains as desired by the researchers since this was a limitation

on the work due to the unavailability of such practical tools.

Therefore, any future works would be focused on the practical

implementation of the proposed scheme.

References

[1] A. Omondi and B. Premkumar, Residue Number

Systems: Theory and Implementation, vol. 2. Published

by imperial college press and distributed by world

scientific publishing co., 2007.

[2] N. Singh, “An overview of Residue Number System,”

presented at the National Seminar on Devices, Circuits

& Communication, Mesra, Ranchi, 2008.

[3] P. A. Agbedemnab and E. K. Bankas, “A Novel RNS

Overflow Detection and Correction Algorithm for the

Moduli Set {2^n-1,2^n,2^n+1},” Int. J. Comput. Appl.,

vol. 110, no. 16, pp. 30–34, Jan. 2015.

[4] M. I. Daabo, “Overflow Detection Schemes for Residue

Number System Architecture,” PhD Thesis, University

for Development Studies, Tamale, Ghana, 2015.

[5] D. Younes and P. Steffan, “Universal Approaches for

Overflow and Sign Detection in Residue Number

System Based on {2n – 1, 2n, 2n + 1},” presented at the

ICONS 2013, The Eighth International Conference on

Systems, 2013, pp. 77–81.

[6] M. I. Daabo and K. A. Gbolagade, “RNS Overflow

Detection Scheme for the Moduli set {M − 1, M},” J.

Comput., vol. 4, no. 8, pp. 39–44, 2012.

[7] R. C. Debnath and D. A. Pucknell, “On multiplicative

overflow detection in residue number system,” Electron.

Lett., vol. 14, no. 5, pp. 129–130, Mar. 1978.

[8] M. Askarzadeh, M. Hosseinzadeh, and K. Navi, “A New

Approach to Overflow Detection in Moduli Set -3, 0 100 200 300 400 500 600
0

1

2

3

4

5

6

7
x 10

5

n values

A
re

a

Area Analysis

[15]

[8]

Proposed

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

n values

D
e
la

y

Delay Comparison

[15]

[8]

Proposed

 AREA DELAY

N [15] [8] Proposed [15]) [8] Proposed

1 42.5 69 44 41 31 27

2 78 117 78 59 47 43

4 164 213 146 95 79 75

8 396 405 282 167 143 139

16 1100 789 554 311 271 267

32 3468 1557 1098 599 527 523

64 12044 3093 2186 1175 1039 1035

128 44556 6165 4362 2327 2063 2059

256 171020 12309 8714 4631 4111 4107

512 669708 24597 17418 9239 8207 8203

Total 902577 49314 34882 18644 16518 16478

Agbedemnab P. A., IJECS Volume 7 Issue 2 February 2018 Page No. 23578-23584 Page 23584

 -1, +1, +3,” in Second International Conference

on Computer and Electrical Engineering, 2009. ICCEE

’09, 2009, vol. 1, pp. 439–442.

[9] M. Rouhifar, M. Hosseinzadeh, S. Bahanfar, and M.

Teshnehlab, “Fast Overflow Detection in Moduli set

{ -1, , +1},” Int. J. Comput. Sci. Issues, vol. (8/3),

pp. 407–414, May 2011.

[10] S. J. Piestrak, “A high-speed realization of a residue to

binary number system converter,” IEEE Trans. Circuits

Syst. II Analog Digit. Signal Process., pp. 661–663, Oct.

1995.

[11] H. Siewobr and K. A. Gbolagade, “RNS Overflow

Detection by Operands Examination,” Int. J. Comput.

Appl., vol. 85, no. 18, pp. 1–5, Jan. 2014.

[12] E. K. Bankas and K. A. Gbolagade, “A New Efficient

RNS Reverse Converter for the 4-Moduli Set { , +1,

2^n-1, -1},” Int. J. Comput. Electr. Autom. Control

Inf. Eng., vol. 8, no. 2, pp. 318–322, 2014.

[13] A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei,

and S. Timarchi, “Efficient Reverse Converter Designs

for the New 4-Moduli sets { -1, , +1, -1}

and { -1, +1, , +1} Based on New CRTs,”

IEEE Trans. Circuits Syst. Regul. Pap., vol. 57, no. 4,

pp. 823–835, Apr. 2010.

[14] E. K. Bankas and K. A. Gbolagade, “A New Efficient

FPGA Design of Residue-To-Binary Converter,” Int. J.

VLSI Des. Commun. Syst. VLSICS, vol. 4, no. 6, Dec.

2013.

[15] P. V. A. Mohan, “New reverse converters for the moduli

set { - , -1, +1, +3},” Int. J. Electron.

Commun., vol. 62, pp. 643–658, 2008.

 Peter A. Agbedemnab has a BSc in Computer

Science and MSc with Research in Computational Mathematics from

the University for Development Studies (UDS), Ghana in 2008 and

2015 respectively. He is a professional teacher with over ten years of

experience in teaching and research work. He is currently an Assistant

Lecturer in the Department of Computer Science, UDS. His research

areas include but not limited to Computer Arithmetic, Residue

Number System, Information Security and Genetic Algorithm.

Moses A. Agebure received his BSc degree in

computer science from the University for Development Studies,

Tamale, Ghana in 2008 and master of philosophy degree in Computer

Engineering from the University of Ghana, Accra, Ghana in 2014.

After his first degree, he worked as a senior research assistant at the

Department of Computer Science of the University for Development

Studies and is currently an assistant lecturer in the same Department

of the University for Development Studies. He has co-authored papers

published in journals. His research interests include, data mining,

machine learning, software engineering and mobile computing

systems.

Stephen Akobre received his Bsc. degree in

Computer Science in 2006 and Msc. degree in Telecommunications

Engineering in 2011 from the Kwame Nkrumah University of Science

and Technology, Kumasi-Ghana. In 2007 he joined the University for

Development studies as a research assistant. He is now a lecturer at

the Department of Computer Science, University for Development

Studies, Navrongo Campus. His research interest include effect of

propagation impairments on satellite communications systems, data

mining, big data and machine learning.

