
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 4 April 2017, Page No. 21006-21010

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i4.37

Manish Kumar, IJECS Volume 6 Issue 4 April, 2017 Page No. 21006-21010 Page 21006

Minimising the Execution Time of Selection Sort Algorithm
Manish Kumar, Ms. Monika Malhotra, Ms. Deepali Ahuja

Research Scholar (CSE)

MD University Rohtak, Haryana, India

manishdahiya2008@gmail.com

Assistant Professor (CSE)

WCTM Gurugram

Assistant Professor (CSE)

WCTM Gurugram

ABSTRACT:

Sorting has made their importance in computing field as well as the applications we face in real life.

So far many algorithms come into existence in current era. In this research paper we present a new

sorting algorithms i.e. Enhanced division Selection sort. We try to enhance the performance of

Selection sort by doing some modifications in the pseudo code. A comparison also has done to do

analysis between existing Selection Sort and Enhanced division Selection Sort. After comparison we

found that the new algorithm has produced better results and good performance during the running

time.

Keywords: Algorithm, Sort, Selection, Research,

Optimize, Developments, Experiment, Enhanced.

I. INTRODUCTION

The importance of the information is very

essential in today time of the world. The

information should be ordered in a sensible

manner. Many years back, it was estimated that

much of the time was spent in sorting. But now,

that is not true because many complex methods

come into existence for processing data before its

use. Sorting a list of items is a very basic problem

in computer science. Organizing the randomly

scattered elements in a particular order is called

sorting. There are very well known algorithms for

sorting purpose are present for sorting unsorted

lists. Some algorithms are simple and some are

complex in nature. The Process of sorting having

a lot of importance because of various reasons

 Sorting information is essential when an

application needs that information.

 Some algorithms use sorting algorithms as

a support.

 In computing world, issues rises when

sorting algorithms are implement.

Efficiency is always important during sorting

process. This field always attracts researchers

since the beginning of computing. Many

researchers considered that sorting is a solved

issue. But still algorithms got discovered.

Each sorting algorithm has their own working

environments. Some are suitable for solving

large lists; some are suitable for small lists.

There are various factors that must be included

for sorting algorithms.

 Availability of memory that is

used for sorting operations. This is

called space complexity.

 Number of exchanges of elements

of list under sorting

 Recursion: some sorting

algorithms are recursive in nature

and some are non recursive.

 Stability.

In this paper a new sorting algorithm is presented.

That is enhanced division Selection sort. The

algorithm is enhancement over the classical

selection sort. The enhanced sorting algorithm is

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i4.37

Manish Kumar, IJECS Volume 6 Issue 4 April, 2017 Page No. 21006-21010 Page 21007

more efficient, tested and reliable compared to the

classical selection sort.

II. LITERATURE REVIEW

Developments in year 2010

In Research Paper[1] enhancements in selection

sort are discovered by Rami Mansi and Jehad

Alnihoud. ESS(Enhanced Selection Sort) is faster

than selection sort and has O(n2) complexity,

when the given elements array is stored in

memory of secondary type like Hard disk, Tape

drive.

Developments in year 2012

Arora Nitin, Kumar vivek and Kumar Suresh in

Research paper[2] published Counting position

sorting and novel sort algorithm. The Counting

position sort works as each element position is

count first in the given array. The smaller

elements are counted and their position is then

fixed in the array.

In Research paper[3], Wasi Haider Butt and

Abdul Wahab discovered Concatenate sort and

relative Split algorithm. They compared the

algorithm with other algorithm and it is

implemented.

Developments in year 2013

Ms Khairullah in Research paper[4] proposed new

enhanced selection sorting algorithm. In this paper

the selection sort is enhanced by remembering

intermediate points using variables, by which the

position is stored up to which no swapping is

taking place and finding a largest up to this

position then this maximum element is placed just

before the position at which swap in taking place.

So in next iteration the comparison starts from

here. For insertion sort, a slight different approach

is applied. A new blank array is taken and an

element placed at first position in array is

removed and shifted to the centre of the new blank

array then one by one a element is removed and

inserted in new array using both the ends. If an

element is greater than element inserted at the

centre , in that case the element will be shifted and

placed at the back side in the array otherwise the

element is placed before the centre element from

the front end.

Sonal Beniwal and Deepti Grover in research

paper[5] presented their views on comparison

between various sorting algorithms.

Pankaj Saren in his research paper[6] also shows

the comparison between sorting algorithms on

average cases

Hence in this way various enhancements had been

taking place and continue to enhance the

performance of these algorithms.

Classical working of selection sort algorithm is as

follows

Selection Sort

Selection sort algorithm works by selecting

smaller element in each pass and placed one after

the other in increasing order starting from the

front side. The smallest element is placed at the

first position and then the next higher element and

likewise the rest of the elements secured their

positions in the array. At the end the array attain

its sorted form contains sorted elements. It is also

simple sorting algorithm.

 III. EXISTING SELECTION SORT

In Existing Selection Sort the array got sorted by

selecting smallest element and shifted at the first

position by exchanging of elements if required. It

also uses two loops in pseudo code to sort the list

of items. The pseudo code is as follows

SELECTION SORT(A)

 n  length[A]

 for j 1 to n-1

 smallest  j

 for I  j+1 to n

 if A[i] < A[smallest]

 then smallest  i

 exchange ([A], A[smallest])

DOI: 10.18535/ijecs/v6i4.37

Manish Kumar, IJECS Volume 6 Issue 4 April, 2017 Page No. 21006-21010 Page 21008

For example, if the Selection Sort were used on

the array, 6, 4, 3, 2, 7, 8, 5, 9. Each pass would be

like as shown in Table 1:

Pass-1 2 4 3 6 7 8 5 9

Pass-2 2 3 4 6 7 8 5 9

Pass-3 2 3 4 6 7 8 5 9

Pass-4 2 3 4 5 7 8 6 9

Pass-5 2 3 4 5 6 8 7 9

Pass-6 2 3 4 5 6 7 8 9

Pass-7 2 3 4 5 6 7 8 9
Table-1. Selection sorting for input

 values 6,4,3,2,7,8,5,9

In Selection sort the number of comparisons is

always the same and the two loops will run for the

specified number of times whether the given array

is sorted or partially sorted.

IV. PROBLEM STATEMENT

The main drawback of Selection sort is the

number of useless comparisons that are performed

even after the array got sorted and a lot of

comparisons for fixing only one element at a time.

If the array is big the comparisons are even more

making it impractical for handling large data set.

V. OBJECTIVE

Our objective is to avoid these useless

comparisons and reduce the time complexity of

the algorithm.

VI. PROPOSED ENHANCED DIVISION

SELECTION SORT ALGORITHM

In this algorithm, sorting is performed in three

phases.

Phase-1: In this phase the given array is searched

for the smallest and largest element and their

position is stored using variables. When the whole

array is scanned then a mid value is calculated by

using smallest and largest element. i.e.

(Smallest+largest)/2.

Phase-2: In this phase, the array is divided into

two parts using this mid value calculated during

first phase. The elements which are lower or

equal to mid value are placed in the part start from

front end. The elements which are larger than this

mid value are placed in the other portion. The first

part of array is up to that point where the last

element which is less or equal to mid value.

Phase-3: In this phase the two arrays are sorted

separately using classical selection sort algorithm.

One sub array in increasing order and the other in

decreasing order.

ALGORITHM

PROPOSED_SELECTION_SORT(A[] , N)

1: Initialize s, g

2: Repeat For loop from i=1 to i<=n

3 if((i==1) && (A[i]>A[i+1])) then

 s=i+1 and g=i

 else if((i==1) && (A[i]<A[i+1])) then

s=i and g=i+1

else if(A[i]<=A[s]) then

s=i

else if(A[i]>=A[g]) then

g=i

swap A[1] and A[s]

End For loop

4. initialize m= (A[s]+A[g])/2 and b=n

5. Repeat For loop from i=1 to n-1

 if(A[i]>m) then

 if(i==b) then

 b=i-1

 break outer For loop

 Repeat For loop from j=b to j>=i

 if(A[j]<=m) then

swap A[i] and A[j]

 b=j-1

 break inner For loop

else if(i==j-1)

 b=b-2

 break inner For loop

 End inner For loop

 if(i==b) then

 break outer For loop

End outer For loop

6. Repeat For loop from i=2 to i<=b-1

 h=i

 Repeat For loop from j=i+1 to j<=b

 if(A[j]<=A[h]) then

 h=j

 End inner For loop

 swap A[i] and A[h]

 End outer For loop

7. Repeat For loop from i=n to i>=b+2

DOI: 10.18535/ijecs/v6i4.37

Manish Kumar, IJECS Volume 6 Issue 4 April, 2017 Page No. 21006-21010 Page 21009

 h=i

 Repeat For loop from j=i-1 to j>=b+1

 if(A[j]>=A[h]) then

 h=j

 End inner For loop

 swap A[i] and A[h]

 End outer For loop

 9. Stop

By dividing the array into two parts using the

mean value which is calculated by using of

smallest and largest elements. We reduce the

number of comparisons between elements since

the two sub arrays got sorted separately and there

is no need to do the merging as the division is

performed like that merging is not required at all.

In the average case, the number of comparisons

and exchanging of elements are always less

compared to normal selection sort.

Let us take the previous example

The given array is as 6, 4, 3, 2, 7, 8, 5, 9.

Phase-1

The value of s=2, g=9 and m=(9+2)/2=5

Then the array formed after replacing the smallest

element to 1
st
 position and largest element to last

position is as shown below

2 4 3 6 7 8 5 9

Phase-2

The array divided into two parts. Each element is

compared with the value of m and placed to front

side if it is less or equal to m and placed towards

end side otherwise. The array becomes

1
st
 part

2 4 3 5 7 8 6 9

 2
nd

 part

Phase-3

The array then sorted in two parts separately from

1
st
 to 4

th
 elements and from 5

th
 to 8

th
 elements.

The first sub array sorted in three passes as shown

in Table-2.

Pass-1 2 4 3 5

Pass-2 2 3 4 5

Pass-3 2 3 4 5
Table-2: Enhanced division selection sort for 1st part of array

The 2
nd

 part got sorted in three passes as shown I

Table-3

Pass-1 6 7 8 9

Pass-2 6 7 8 9

Pass-3 6 7 8 9
Table-3: Enhanced division selection sort for 2nd part of array

VII. IMPLEMENTATION

 In order to test this proposed algorithm for its

efficiency the algorithm was implemented in C

language on Turbo C++ with operating system

window 7. But it was sufficient to sort less no of

data item up to 15000 because of memory

problem.

VIII. ANALYSIS AND RESULTS.

 Both algorithms are compared on the same

elements of unordered list. In order to make a

comparison of the proposed algorithms with the

existing Selection sort, a number of tests were

conducted for small as well as large number of

elements. A Comparative study of execution time

for the number of inputs is shown in tabular form

as in Table-4 below

Table-4: Comparative study of execution time of Selection Sort

and Enhanced Division Selection Sort

No of

Elements

Given as

input for

sorting

Time

taken by

Selection

sort

(in sec)

Time

taken by

Optimized

Division

Selection

sort

(in sec)

Difference

(in sec)

1000 0.05 0.00 0.05

2000 0.16 0.05 0.11

3000 0.43 0.16 0.27

4000 0.54 0.21 0.33

5000 0.60 0.32 0.28

6000 0.82 0.38 0.44

7000 1.26 0.49 0.77

8000 1.42 0.54 0.88

9000 1.86 0.60 1.26

10000 2.08 0.60 1.48

DOI: 10.18535/ijecs/v6i4.37

Manish Kumar, IJECS Volume 6 Issue 4 April, 2017 Page No. 21006-21010 Page 21010

Fig-1: Number of inputs vs. CPU time in (sec)

In Fig-1, the X Axis shows the number of

elements and the Y Axis shows the time elapsed

in seconds.

IX. CONCLUSION

In this research paper we try to find the issues

related to selection sort and earlier work

performed in this field. After doing detailed

experiment in this field and analyze the various

results we reach to conclusion that enhanced

selection sort algorithm is efficient and giving

better results. The complexity is much better than

the existing Selection sort algorithm even in worst

cases. In average case also, the complexity is

always less than O(n²) . The field of sorting is so

vast that still more research will take place.

REFERENCES

[1] Jehad Alnihoud and Rami Mansi, “An

Enhancement of Major Sorting Algorithms,” The

International Arab Journal of Information

Technology, Vol.7, No. 1, January 2010.

 [2] Arora Nitin, Kumar vivek and Kumar Suresh.

“A Novel Sorting Algorithm and Comparison with

Bubble Sort and Insertion Sort,” International

Journal of Computer Applications (0975-8887)

vol. 45, No. 1, May 2012.

 [3] Abdul Wahab Muzaffar, Naveed Riaz,

Juwaria Shafiq and Wasi Haider Butt, “ Relative

Sp lit and Concatenate Sort (RSCS-VI)”,

International Journal of Computer Theory and

Engineering vol. 4, No. 2, April 2012.

 [4] Md. Khairullah “ Enhancing Worst

Sorting Algorithms” International Journal of

Advanced Science and Technology Vol. 56, July,

2013.

 [5] Sonal Beniwal, Deepti Grover, “Comparison

of various sorting algorithms” , International

Journal of Emerging Research in Management

&Technology ISSN: 2278-9359 (Volume-2,

Issue-5) , May 2013

[6] Sareen Pankaj, “ Comparison of Sorting

Algorithms (On the Basis of Average case)”,

International Journal of Advanced Research in

Computer Science and software Engineering

ISSn: 2277128x, volume 3, Issue 3, March 2013,

pp. 522-532

0

0.5

1

1.5

2

2.5

1
0

00

2
0

00

3
0

00

4
0

00

5
0

00

6
0

00

7
0

00

8
0

00

9
0

00

1
0

00
0

Ti
m

e
 in

 s
e

c

Number of elements

Selection
sort (in sec)

Optimized
Selection
sort (in sec)

